
Apple III
CP/M
Reference Manual

—

Notice
Apple Computer, Inc., Microsoft Corporation, and Digital Research Inc., reserves the
right to make improvements in the product described in this manual at any time and
without notice.

Disclaimer of All Warranties
and Liability Relating to Software

. -... . ~...~~....—... —.... -.....-... .. —... —.
APPLE COMPUTER, INC., MICROSOFT CORPORATION, AND DIGITAL RESEARCH
INC. MAKE NO WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESPECT
TO THIS MANUAL OR WITH RESPECT TO THE SOFTWARE DESCRIBED IN THIS
MANUAL, ITS QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE. THIS SOFTWARE IS LICENSED AS IS.” THE ENTIRE
RISK AS TO ITS QUALITY AND PERFORMANCE IS WITH THE BUYER. SHOULD
THE SOFTWARE PROVE DEFECTIVE FOLLOWING ITS PURCHASE, THE BUYER
(AND NOT APPLE COMPUTER, INC., MICROSOFT CORPORATION, OR DIGITAL
RESEARCH INC., THEIR DISTRIBUTORS, OR THEIR RETAILERS) ASSUMES THE
ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTIONS
AND ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES. IN NO EVENT WILL
APPLE COMPUTER, INC., MICROSOFT CORPORATION, OR DIGITAL RESEARCH
INC. BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT IN THE MANUAL OR IN THE
SOFTWARE EVEN IF THEY HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION
OF IMPLIED WARRANTIES OR LIABILITIES FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO
YOU.

The SoftCard III and all software and documentation in the SoftCard package
exclusive of the CP/M operating system are copyrighted under US Copyright laws by
Microsoft Corporation. Copyright Microsoft Corporation 1982.

The CP/M operating system and CP/M documentation are copyrighted under US
Copyright laws by Digital Research. Copyright 1976, 1977, 1978 by Digital Research.
All rights reserved. (CP/M Reference Manual edited in part by Microsoft.)

This manual may not, in whole, or part, be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine readable form without
prior consent, in writing, from copyright owners.

c Copyright Microsoft Corporation 1982
All rights reserved

SoftCard III is a trademark of the Microsoft Corporation.
Apple and the Apple logo are registered trademarks of Apple Computer, Inc.
CP/M is a registered trademark of Digital Research, Inc.
Z-80 is a registered trademark of Zilog, Inc.

All references to SOS-CP/M Utilities Diskette in this
manual refer to the SoftCard III Utilities Diskette
contained in the product package.
The use of SOS-CP/M utilities is not intended to convey
any connection between DRI and the utility program.
CP/M is a registered trademark of Digital Research, Inc.

CP/M Reference Manual

__
ii CP/M Reference Manua

Contents iii

n
n
■

Contents

27
37
40

Introduction
An Overview of CP/M 2.0 Facilities
Functional Description of CP/M
General Command Structure
File References
Switching Disks
Form of Built-in Commands

ERAse Command
DI Rectory Command
REName Command
SAVE Command
TYPE Command
USER Command

Line Editing and Output Control
Transient Commands

STAT
ASM
LOAD
PIP
ED
SUBMIT

Introduction to
CP/M Features and Facilities

Preface

iv CP/M Reference Manual

42 XSUB
43 DUMP
43 BDOS Error Messages

2 CP/M 2.0 Interface Guide 45

46 Introduction
50 Operating System Call Conventions
78 Sample File-to-File Copy Program
81 Sample File Dump Utility
84 Sample Random Access Program
92 System Function Summary

3 CP/M Editor

94 Introduction to ED
95 ED Operation
95 Text Transfer Functions
99 Memory Buffer Organization

100 Memory Buffer Operation
102 Command Strings
103 Text Search and Alteration
107 Source Libraries
107 Repetitive Command Execution
108 ED Error Conditions
109 Summary of Control Characters
110 Summary of ED Commands
111 ED Text Editing Commands

93

Contents v

4 CP/M Assembler 115

116 Introduction
118 Program Format
120 Forming the Operand
120 Labels
121 Numeric Constants
122 Reserved Words
123 String Constants
123 Arithmetic and Logical Operators
125 Precedence of Operators
126 Assembler Directives
126 The ORG Directive
127 The END Directive
127 The EQU Directive
128 The SET Directive
129 The IF and ENDIF Directives
131 The DB Directive
131 The DW Directive
132 The DS Directive
132 Operation Codes
133 Jumps, Calls and Returns
134 Immediate Operand Instructions
135 Increment and Decrement Instructions
136 Data Movement Instructions
137 Arithmetic Logic Unit Operations
138 Control Instructions
139 Error Messages
140 A Sample Session

vi CP/M Reference Manua

5 CP/M Dynamic Debugging Tool 145

146 Introduction
149 DDT Commands
150 The A (Assemble) Command
150 The D (Display) Command
151 The F (Fill) Command
152 The G (Go) Command
153 The I (Input) Command
153 The L (List) Command
154 The M (Move) Command
154 The R (Read) Command
155 The S (Set) Command
156 The T (Trace) Command
157 The U (Untrace) Command
157 The X (Examine) Command
158 Implementation Notes
159 Sample Session

Index 169

Preface vii

R
h
H
R

This manual is a general reference for a standard CP/M system.
Features of Apple SoftCard III CP/M may differ slightly in features
or operation from the system described in this manual. Consult
your SoftCard III Installation and Operation Manual for specific
details.

H
R
n

Introduction 1

i

Introduction
to CP/M Features and Facilities

I T

? s i i s 1?
1 1

I 1 | | J I 1

1
| | I

I | | I | i I I
I I I i I i I 1

2 Introduction
1

§ I $

4 Overview of CP/M 2.0 Facilities 1

6 Functional Description of CP/M 1
1 i

7 General Command Structure 1

7 File References > 1 1

10 Switching Disks
10 Form of Built-in Commands 8 1

8 8 1

ERAse Command X §

12 DI Rectory Command
13 REName Command 1 1

14 SAVE Command * 1 1

14 TYPE Command
15 USER Command 1^1

15 Line Editing and Output Control S .1 ¥

17 Transient Commands g j? s

18 STAT
ASM

1 $ 5 5

25 1 I i

26 LOAD I

27 PIP
37 ED I

40 SUBMIT
42 XSUB
43 DUMP I

43 BDOS Error Messages

1

*

$ 11 1

Introduction to
CP/M Features and Facilities

Introduction

CP/M is a monitor control program for microcomputer system
development which uses IBM-compatible flexible disks for backup
storage. Using a computer mainframe based upon Intel’s 8080
microcomputer, CP/M provides a general environment for program
construction, storage, and editing, along with assembly and program
check-out facilities. An important feature of CP/M is that it can be
easily altered to execute with any computer configuration which
uses an Intel 8080 (or Zilog Z-80) Central Processing Unit, and has
at least 16K bytes of main memory with up to four IBM-compatible
diskette drives. Although the standard Digital Research version
operates on a single-density Intel MDS 800, several different
hardware manufacturers support their own input-output drivers for
CP/M.

The CP/M monitor provides rapid access to programs through a
comprehensive file management package. The file subsystem
supports a named file structure, allowing dynamic allocation of file
space as well as sequential and random file access. Using this file
system, a large number of distinct programs can be stored in both
source and machine executable form.

CP/M also supports a powerful context editor, Intel-compatible
assembler, and debugger subsystem. Optional software includes a
powerful Intel-compatible macro assembler, symbolic debugger,

Introduction 3

along with various high-level languages. When coupled with CP/M’s
Console Command Processor, the resulting facilities equal or excel
similar large computer facilities.

CP/M is logically divided into several distinct parts:

Basic I/O System (hardware dependent)
Basic Disk Operating System

Console Command Processor

BIOS
BDOS

CCP
Transient Program AreaTPA

The BIOS provides the primitive operations necessary to access
the diskette drives and to interface standard peripherals (teletype,
CRT, Paper Tape Reader/Punch, and user-defined peripherals), and
can be tailored by the user for any particular hardware environment
by “patching” this portion of CP/M.

The BDOS provides disk management by controlling one or more
disk drives containing independent file directories. The BDOS
implements disk allocation strategies which provide fully dynamic
file construction while minimizing head movement across the disk
during access. Any particular file may contain any number of
records, not exceeding the size of any single disk. In a standard
CP/M system, each disk can contain up to 64 distinct files. The
BDOS has entry points which include the following primitive
operations which can be programmatically accessed:

SEARCH Look for a particular disk file by name.
OPEN Open a file for further operations.
CLOSE Close a file after processing.

RENAME Change the name of a particular file.

READ Read a record from a particular file.
WRITE Write a record onto the disk.

SELECT Select a particular disk drive for
further operations.

4 CP/M Reference Manual

The CCP provides symbolic interface between the user’s console
and the remainder of the CP/M system. The CCP reads the console
device and processes commands which include listing the file
directory, printing the contents of files, and controlling the operation
of transient programs, such as assemblers, editors, and debuggers.
The standard commands which are available in the CCP are listed
in a following section.

The last segment of CP/M is the area called the Transient Program
Area (TPA). The TPA holds programs which are loaded from the
disk under command of the CCP. During program editing, for
example, the TPA holds the CP/M text editor machine code and
data areas. Similarly, programs created under CP/M can be checked
out by loading and executing these programs in the TPA.

It should be mentioned that any or all of the CP/M component
subsystems can be “overlayed” by an executing program. That is,
once a user’s program is loaded into the TPA, the CCP, BDOS, and
BIOS areas can be used as the program’s data area. A “bootstrap”
loader is programmatically accessible whenever the BIOS portion
is not overlayed; thus, the user program need only branch to the
bootstrap loader at the end of execution, and the complete CP/M
monitor is reloaded from disk.

It should be reiterated that the CP/M operating system is partitioned
into distinct modules, including the BIOS portion which defines the
hardware environment in which CP/M is executing. Thus, the
standard system can be easily modified to any non-standard
environment by changing the peripheral drivers to handle the
custom system.

An Overview of CP/M 2.0 Facilities

CP/M 2.0 is a high-performance single-console operating system
which uses table driven techniques to allow field configuration to
match a wide variety of disk capacities. All of the fundamental file
restrictions are removed, while maintaining upward compatibility
from previous versions of release 1. Features of CP/M 2.0 include
field specification of one to sixteen logical drives, each containing

Introduction 5

II
■

II
H
n

N

up to eight megabytes. Any particular file can reach the full drive
size with the capability to expand to thirty-two megabytes in future
releases. The directory size can be field configured to contain any
reasonable number of entries, and each file is optionally tagged
with read/only and system attributes. Users of CP/M 2.0 are
physically separated by user numbers, with facilities for file copy
operations from one user area to another. Powerful relative-record
random access functions are present in CP/M 2.0 which provide
direct access to any of the 65536 records of an eight megabyte file.

All disk-dependent portions of CP/M 2.0 are placed into a BIOS-
resident “disk parameter block” which is either hand coded or
produced automatically using the disk definition macro library
provided with CP/M 2.0. The end user need only specify the
maximum number of active disks, the starting and ending sector
numbers, the data allocation size, the maximum extent of the
logical disk, directory size information, and reserved track values.
The macros use this information to generate the appropriate tables
and table references for use during CP/M 2.0 operation. Deblocking
information is also provided which aids in assembly or disassembly
of sector sizes which are multiples of the fundamental 128 byte
data unit, and the system alteration manual includes general-purpose
subroutines which use this deblocking information to take advantage
of larger sector sizes. Use of these subroutines, together with the
table driven data access algorithms, make CP/M 2.0 truly a universal
data management system.

File expansion is achieved by providing up to 512 logical file
extents, where each logical extent contains 16K bytes of data.
CP/M 2.0 is structured, however, so that as much as 128K bytes of
data is addressed by a single physical extent (corresponding to a
single directory entry), thus maintaining compatibility with previous
versions while taking full advantage of directory space.

Random access facilities are present in CP/M 2.0 which allow
immediate reference to any record of an eight megabyte file. Using
CP/M’s unique data organization, data blocks are only allocated
when actually required and movement to a record position requires
little search time. Sequential file access is upwardly compatible
from earlier versions to the full eight megabytes, while random
access compatibility stops at 512K byte files. Due to CP/M 2.0’s

6 CP/M Reference Manual

simpler and faster random access, application programmers are
encouraged to alter their programs to take full advantage of the 2.0
facilities.

Several CP/M 2.0 modules and utilities have improvements which
correspond to the enhanced file system. STAT and PIP both account
for file attributes and user areas, while the CCP provides a “login”
function to change from one user area to another. The CCP also
formats directory displays in a more convenient manner and
accounts for both CRT and hard-copy devices in its enhanced line
editing functions.

Functional Description of CP/M

The user interacts with CP/M primarily through the CCP, which
reads and interprets commands entered through the console. In
general, the CCP addresses one of several disks which are online
(the standard system addresses up to four different disk drives).
These disk drives are labelled A, B, C, and D. A disk is “logged in” if
the CCP is currently addressing the disk. In order to clearly
indicate which disk is the currently logged disk, the CCP always
prompts the operator with the disk name followed by the symbol
“>” indicating that the CCP is ready for another command. Upon
initial start up, the CP/M system is brought in from disk A, and
the CCP displays the message

xxKCP/M VER m.m

where xx is the memory size (in kilobytes) which this CP/M system
manages, and m.m is the CP/M version number. Following system
signon, CP/M automatically logs in disk A, prompts the user with
the symbol “A>” (indicating that CP/M is currently addressing
disk “A”), and waits for a command. The commands are implemented
to two levels: built-in commands and transient commands.

Introduction 7

General Command Structure

Built-in commands are a part of the CCP program itself, while
transient commands are loaded into the TPA from disk and
executed. The built-in commands are

ERA Erase specified files.
DIR Displays file names in the directory.

REN Rename the specified file.
SAVE Save memory contents in a file.

TYPE Type the contents of a file on the logged disk.

USER Move to another area within the same
directory.

Nearly all of the commands reference a particular file or group of
files. The form of a file reference is specified below.

File References

A file reference identifies a particular file or group of files on a
particular disk attached to CP/M. These file references can be
either “unambiguous” (ufn) or “ambiguous” (afn). An unambiguous
file reference uniquely identifies a single file, while an ambiguous
file reference may be satisfied by a number of different files.

File references consist of two parts: the primary name and the
secondary name. Although the secondary name is optional, it
usually is generic; that is, the secondary name “ASM,” for
example, is used to denote that the file is an assembly language
source file, while the primary name distinguishes each particular
source file. The two names are separated by a as shown below:

pppppppp.sss

Where pppppppp represents the primary name of eight characters

8 CP/M Reference Manual

or less, and sss is the secondary name of no more than three
characters. As mentioned above, the name

pppppppp

is also allowed and is equivalent to a secondary name consisting
of three blanks. The characters used in specifying an unambiguous
file reference cannot contain any of the special characters

<>.,;: = ? * []

while all alphanumerics and remaining special characters are
allowed.

An ambiguous file reference is used for directory search and
pattern matching. The form of an ambiguous file reference is
similar to an unambiguous reference, except the symbol “?” may
be interspersed throughout the primary and secondary names. In
various commands throughout CP/M, the “?” symbol matches any
character of a file name in the “?” position. Thus, the ambiguous
reference

X?Z.C?M

is satisfied by the unambiguous file names

XYZ.COM

and

X3Z.CAM

Note that the ambiguous reference

* *

is equivalent to the ambiguous file reference

XYZ.COM

Introduction 9

while

pppppppp.

and

.sss

are abbreviations for
H

pppppppp.???

and

????????.sss

respectively. As an example,

DIR *.*

n DIRX.Y

searches only for a file by the name X.Y. Similarly, the commandn
DIR X?Y.C?MII

n
The following file names are valid unambiguous file references:

H
GAMMAXYZ
GAMMA.1XYZ.COM

As an added convenience, the programmer can generally specify
the disk drive name along with the file name. In this case, the drive
name is given as a letter A through Z followed by a colon (:). The

is interpreted by the CCP as a command to list the names of all disk
files in the directory, while

causes a search for all (unambiguous) file names on the disk which
satisfy this ambiguous reference.

XYZ.COM

10 CP/M Reference Manual

specified drive is then “logged in” before the file operation occurs.
Thus, the following are valid file names with disk name prefixes:

A:X.Y
Z:XYZ.COM

B:XYZ
B:X.A?M

C:GAMMA

C:*.ASM

It should also be noted that all alphabetic lower case letters in file
and drive names are always translated to upper case when they
are processed by the CCP.

Switching Disks

The operator can switch the currently logged disk by typing the
disk drive name (A, B, C, or D) followed by a colon (:) when the CCP
is waiting for console input. Thus, the sequence of prompts and
commands shown below might occur after the CP/M system is
loaded from disk A:

16KCP/M VER 1.4
A>DIR
SAMPLE ASM

SAMPLE PRN

A>B:
B>Dir*.ASM
DUMP ASM

FILES ASM

B>A:

List all files on disk A.

Switch to disk B.
List all “ASM” files on B.

Switch back to A.

Form of Built-in Commands

The file and device reference forms described above can now be
used to fully specify the structure of the built-in commands. In the

Z:XYZ.COM

Introduction 11

description below, assume the following abbreviations:

ufn unambiguous file reference

ambiguous file reference
carriage return

afn

Further, recall that the CCP always translates lower case characters
to upper case characters internally. Thus, lower case alphabetics
are treated as if they are upper case in command names and file
references.

ERAse Command
ERA afn

The ERA (erase) command removes files from the currently
logged-in disk (i.e., the disk name currently prompted by CP/M
preceding the “>”). The files which are erased are those which
satisfy the ambiguous file reference afn. The following examples
illustrate the use of ERA:

ERA X.Y The file named X.Y on the currently
logged disk is removed from the disk
directory, and the space is returned.

ERAX.* All files with primary name X are
removed from the current disk.

ERA *.ASM All files with secondary name ASM
are removed from the current disk.

ERA X?Y.C?M All files on the current disk which
satisfy the ambiguous reference
X?Y.C?M are deleted.

ERA*.* Erase all files in the current user’s
directory. (See USER, page 15.) The
CCP prompts with the message

ALL (Y/N)?

which requires a Y response before
files are actually removed.

12 CP/M Reference Manual

ERA B:*.PRN All files on drive B which satisfy
the ambiguous reference

????????.PRN

are deleted, independently of the
currently logged disk.

DI Rectory Command
DIR afn

The DIR(directory) command causes the names of all files which
satisfy the ambiguous file name afn to be listed at the console
device. As a special case, the command

DIR

lists the files on the currently logged disk (the command “DIR” is
equivalent to the command “DIR *.*”). Valid DIR commands are
shown below.

DIR X.Y

DIR X?Z.C?M

DIR ??.Y

Similar to other CCP commands, the afn can be preceded by a
drive name. The following DIR commands cause the selected
drive to be addressed before the directory search takes place.

DIR B:

DIR B:X.Y
DIR B:*.A?M

If no files can be found on the selected diskette which satisfy the
directory request, then the message “NOT FOUND” is typed at
the console.

Introduction 13

REName Command

REN ufn2 = ufn1

The REN (rename) command allows the user to change the
names of files on disk. The file satisfying ufn2 is changed to ufn1.
The currently logged disk is assumed to contain the file to
rename (ufn1). The CCP also allows the user to type a left-directed
arrow instead of the equal sign, if the user’s console supports the
graphic character. Examples of the REN command are

REN X.Y = Q.R

REN XYZ.COM = XYZ.XXX

The file Q.R is changed
to X.Y.
The file XYZ.XXX is
changed to XYZ.COM.

The operator can precede either ufn1 or ufn2 (or both) by an
optional drive address. Given that ufn1 is preceded by a drive
name, then ufn2 is assumed to exist on the same drive as ufn1.
Similarly, if ufn2 is preceded by a drive name, then ufn1 is assumed
to reside on that drive as well. If both ufn1 and ufn2 are preceded
by drive names, then the same drive must be specified in both
cases. The following REN commands illustrate this format.

REN A:X.ASM = Y.ASM

REN B:ZAP.BAS = ZOT.BAS

REN B:A.ASM = BABAK

The file Y.ASM is
changed to X.ASM on
drive A.
The file ZOT.BAS is
changed to ZAP. BAS on
drive B.
The file A.BAK is
renamed to A.ASM on
drive B.

If the file ufn1 is already present, the REN command will respond
with the error “FILE EXISTS” and not perform the change. If
ufn2 does not exist on the specified diskette, then the message
“NOT FOUND” is printed at the console.

XYZ.COM
XYZ.COM

14 CP/M Reference Manual

SAVE Command

SAVE n ufn

The SAVE command places n pages (256-byte blocks) onto disk
from the TPA and names this file ufn. In the CP/M distribution
system, the TPA starts at 100H (hexadecimal), which is the
second page of memory. Thus, if the user’s program occupies the
area from 100H through 2FFH, the SAVE command must specify
two pages of memory. The machine code file can be subsequently
loaded and executed. Examples are:

SAVE 3 X.COM

SAVE 40 Q

SAVE 4 X.Y

Copies 100H through
3FFH to X.COM.

Copies 100H through
28FFH to Q (note that
28 is the page count in
28FFH,and that 28H =
2*16+8 = 40 decimal).
Copies 100H through
4FFH to X.Y.

The SAVE command can also specify a disk drive in the afn portion
of the command, as shown below.

SAVE 10 B:ZOT.COM Copies 10 pages (1 OOH
through OAFFH) to the
file ZOT.COM on drive B.

The SAVE operation can be used any number of times without
altering the memory image.

TYPE Command

TYPE ufn

The TYPE command displays the contents of the ASCII source file
ufn on the currently logged disk at the console device. Valid

X.COM
X.COM
B:ZOT.COM
ZOT.COM

Introduction 15

TYPE commands are

TYPE X.Y

TYPE X.PLM

TYPE XXX

The TYPE command expands the tabs (ctl-l characters), assuming
tab positions are set at every eighth column. The ufn can also
reference a drive name as shown below.

TYPE B:X.PRN The file X.PRN from
drive B is displayed.

USER Command

USER n

Where n is an integer value in the range 0 to 15.

Upon cold start, the operator is automatically “logged” into user
area number 0. The operator may issue the USER command at any
time to move to another logical area within the same directory.

Drives which are logged in while addressing one user number
are automatically active when the operator moves to another user
number since a user number is simply a prefix which accesses
particular directory entries on the active disks.

The active user number is maintained until changed by a subsequent
USER command, or until a cold start operation when user 0 is
again assumed.

Line Editing and Output Control

The CCP allows certain line editing functions while typing command
lines. “Control” indicates that the Control key and the indicated key
are to be pressed simultaneously. CCP commands can generally be

16 CP/M Reference Manual

up to 255 characters in length; they are not acted upon until the
carriage return key is pressed.

rubout/delete Remove and echo last character typed.

Control C
Control E

Control H

Control J

Reboot CP/M when at beginning of line.

Physical end of line: carriage is
returned, but line is not sent until the
carriage return key is depressed.
Backspace one character position.
Produces the backspace overwrite
function. Can be changed internally
to another character, such as delete,
through a simple single byte change.

Line feed. Terminates current input.

Control M Carriage return. Terminates input.

Control R Retype current command line after
new line.

Control X Backspace to beginning of current line.

The line editor keeps track of the current prompt column position
so that the operator can properly align data input following a
Control R or Control X command.

The control functions Control P and Control S affect console output
as shown below.

Control P Copy all subsequent console output
to the currently assigned list device
(see the STAT command). Output is sent
to both the list device and the console
device until the next Control P is typed.

Control S Stop the console output temporarily.
Program execution and output continue
when the next character is typed at
the console (e.g., another Control S).
This feature is used to stop output on

Introduction 17

Transient Commands

STAT

ASM

LOAD

DDTn
pip■

SUBMIT

DUMP

high speed consoles, such as CRT’s,
in order to view a segment of output
before continuing.

Transient commands are loaded from the currently logged disk and
executed in the TPA. The transient commands defined for execution
under the CCP are shown below. Additional functions can easily be
defined by the user (see the LOAD command definition).

Load the Peripheral Interchange
Program for subsequent disk file and
peripheral transfer operations.

Load and execute the CP/M text
editor program.

Submit a file of commands for
batch processing.

Dump the contents of a file in hex.

List the number of bytes of storage
remaining on the currently logged disk,
provide statistical information about
particular files, and display or alter
device assignment.
Load the CP/M assembler and
assemble the specified program from
disk.

Load the file in Intel “hex” machine
code format and produce a file in
machine executable form which can be
loaded into the TPA (this loaded
program becomes a new command
under the CCP).
Load the CP/M debugger into TPA
and start execution.

18 CP/M Reference Manual

Transient commands are specified in the same manner as built-in
commands, and additional commands can be easily defined by the
user. As an added convenience, the transient command can be
preceded by a drive name, which causes the transient to be loaded
from the specified drive into the TPA for execution. Thus, the
command

B:STAT

causes CP/M to temporarily “log in” drive B for the source of the
STAT transient, and then return to the original logged disk for
subsequent processing.

The basic transient commands are listed in detail below.

STAT
The STAT command provides general statistical information about
file storage and device assignment. It is initiated by typing one of
the following forms:

STAT
STAT “command line”

Special forms of the “command line” allow the current device
assignment to be examined and altered as well. The various
command lines which can be specified are shown below, with an
explanation of each form shown to the right.

STAT <cr> If the user types an empty command
line, the STAT transient calculates the
storage remaining on all active drives,
and prints a message

x: R/W, SPACE: nnnK
or

x: R/O, SPACE: nnnK

for each active drive x, where R/W
indicates the drive may be read or
written, and R/O indicates the drive
is read only (a drive becomes R/O by
explicitly setting it to read only, as

Introduction 19

STAT x: <cr>

STAT afn <cr>

STAT x:afn <cr>

shown below, or by inadvertently changing
diskettes without performing a warm
start). The space remaining on the
diskette in drive x is given in kilobytes
by nnn.

If a drive name is given, then the drive
is selected before the storage is
computed. Thus, the command “STAT B:”
could be issued while logged into drive
A, resulting in the message

BYTES REMAINING ON B: nnnK

The command line can also specify a set
of files to be scanned by STAT. The files
which satisfy afn are listed in alphabetical
order, with storage requirements for each
file under the heading
RECS BYTS EX D:FILENAME.TYP
rrrr bbbK ee d:pppppppp.sss

where rrrr is the number of 128-byte
records allocated to the file, bbb is the
number of kilobytes allocated to the file
(bbb=rrrr*128/1024), ee is the number of
16K extensions (ee=bbb/16), d is the
drive name containing the file (A...Z),
pppppppp is the (up to) eight-character
primary file name, and sss is the
(up to) three-character secondary name.
After listing the individual files, the
storage usage is summarized.
As a convenience, the drive name can
be given ahead of the afn. In this case,
the specified drive is first selected, and
the form “STAT afn” is executed.

20 CP/M Reference Manual

STAT d:filename.typ $S<cr>
(“d:” is optional drive
name and
“filename.typ” is

Produces the output display format:

Size Rees Bytes Ext Acc
an unambiguous or 48 48 6K 1 R/O A:ED.C0Mambiguous file 55 55 12K 1 R/O (A:PIP.C0M)
name) 65536 128 2K 2 R/W A:X.DAT

The $S parameter causes the “Size”
field to be displayed. (The command
may be used without the $S if desired.)
The Size field lists the virtual file size
in records, while the "Rees” field sums
the number of virtual records in each
extent. For files constructed sequentially,
the Size and Rees fields are identical.
The “Bytes” field lists the actual number
of bytes allocated to the corresponding
file. The minimum allocation unit is
determined at configuration time, and
thus the number of bytes corresponds to
the record count plus the remaining
unused space in the last allocated
block for sequential files. Random access
files are given data areas only when
written, so the Bytes field contains the
only accurate allocation figure. In the
case of random access, the Size field
gives the logical end-of-file record
position and the Rees field counts the
logical records of each extent (each of
these extents, however, may contain
unallocated “holes” even though they
are added into the record count). The
“Ext” field counts the number of local
16K extents allocated to the file. The
“Acc” field gives the R/O or R/W access
mode, which is changed using the
commands shown below. The parentheses
shown around the PIP.COM file name
indicate that it has the “system”

PIP.COM

Introduction 21

indicator set, so that it will not be
listed in DIR commands.

STAT d:filename.typ $R/O <cr>
Places the file or set of files in a
read-only status until changed by a
subsequent STAT command. The R/O
status is recorded in the directory with the
file so that it remains R/O through
intervening cold start operations. When a
file is marked R/O, attempts to erase or
write into the file result in a terminal BDOS
message: Bdos Err on D: File R/O.

STAT d:filename.typ $R/W <cr>
Places the file in a permanent
read/write status.

STAT d:filename.typ $SYS <cr>
Attaches the system indicator to the file.

STATd:filename.typ $DIR <cr>
Removes the system indicator from the file.

STAT d:DSK: <cr> Lists the drive characteristics of the disk
named by “d:” which is in the range
A:, B:,.... P:. The drive characteristics
are listed in the format:

d:
65536:

8192:
128:

0:
1024:

128:
58:

2:

Drive Characteristics
128 Byte Record Capacity
Kilobyte Drive Capacity
32 Byte Directory Entries
Checked Directory Entries
Records/Extent
Records/Block
Sectors/Track
Reserved Tracks

The total record capacity is listed, followed
by the total drive capacity listed in Kbytes.
The number of checked entries is usually
identical to the directory size for removable
media, since this mechanism is used to
detect changed media during CP/M
operation without an intervening warm

22 CP/M Reference Manual

start. The number of records per extent
determines the addressing capacity of
each directory entry (1024 times 128 bytes,
or 128K in the example above). The
number of records per block shows the
basic allocation size (in the example, 128
records/block times 128 bytes per record,
or 16K bytes per block). The listing is then
followed by the number of physical sectors
per track and the number of reserved
tracks.
Lists drive characteristics as above for all
currently active drives.
Produces a list of the user numbers which

STAT DSK: <cr>

STAT USR: <cr>
have files on the currently addressed disk.
The display format is:

Active User: 0
Active Files: 0 1 3

where the first line lists the currently
addressed user number, as set by the last
CCP USER command, followed by a list of
user numbers scanned from the current
directory. In the above case, the active
user number is 0 (default at cold start),
with three user numbers which have active
files on the current disk. The operator can
subsequently examine the directories of
the other user numbers by logging in with
USER 1, USER 2, or USER 3 commands,
followed by a DIR command at the CCP
level.

The STAT command also allows control over the physical to logical
device assignment (see the IOBYTE function described in the
“CP/M Interface Guide”). In general, there are four logical peripheral
devices which are, at any particular instant, each assigned to one of
several physical peripheral devices. The four logical devices are
named:

The system console device (used by CCPCON:
for communication with the operator)

Introduction 23

' RDR: The paper tape reader device

PUN: The paper tape punch device
LST: The output list device

The actual devices attached to any particular computer system are
driven by subroutines in the BIOS portion of CP/M. Thus, the
logical RDR: device, for example, could actually be a high speed
reader, Teletype reader, or cassette tape. In order to allow some
flexibility in device naming and assignment, several physical devices
are defined, as shown below:

TTY: Teletype device (slow speed console)

CRT: Cathode ray tube device
(high speed console)

BAT: Batch processing (console is current
RDR:, output goes to current LST: device)

UC1: User-defined console

PTR: Paper tape reader (high speed reader)

UR1: User-defined reader #1

UR2: User-defined reader #2

PTP: Paper tape punch (high speed punch)

UP1: User-defined punch #1

UP2: User-defined punch #2

LPT: Line printer
UL1: User-defined list device #1

It must be emphasized that the physical device names may or may
not actually correspond to devices which the names imply. That is,
the PTP: device may be implemented as a cassette write operation,
if the user wishes. The exact correspondence and driving subroutine
is defined in the BIOS portion of CP/M.

24 CP/M Reference Manual

The command:

STAT VAL: <cr>

produces a summary of the available status commands, resulting in
the output:

Temp R/O Disk: d: = R/O
Set Indicator: d:filename.typ $R/O $R/W $SYS $DIR

Disk Status: DSK: d:DSK:

User Status: USR:
lobyte Assign:

CON. = TTY: CRT: BAT: UC1:
RDR: = TTY: PTR: UR1: UR2:
PUN: = TTY: PTP: UP1: UP2:
LST: = TTY: CRT: LPT: UL1:

In each case, the logical device shown to the left can take any of
the four physical assignments shown to the right on each line. The
current logical to physical mapping is displayed by typing the
command

STAT DEV: <cr>

which produces a listing of each logical device to the left, and the
current corresponding physical device to the right. For example,
the list might appear as follows:

CON: = CRT:
RDR: = UR1:
PUN: = PTP:
LST: = TTY:

The current logical to physical device assignment can be changed by
typing a STAT command of the form

STAT Id 1 = pd1, Id2 = pd2 , ... , Idn = pdn <cr>

where Id1 through Idn are logical device names, and pd1 through

Introduction 25

pdn are compatible physical device names (i.e., Idi and pdi appear on
the same line in the “VAL:” command shown above). The
following are valid STAT commands which change the current logical
to physical device assignments:

STAT CON: = CRT: <cr>
STAT PUN: = TTY:,LST: = LPT:,RDR: = TTY: <cr>

ASM ufn
The ASM command loads and executes the CP/M 8080 assembler.
The ufn specifies a source file containing assembly language
statements where the secondary name is assumed to be ASM, and
thus is not specified. The following ASM commands are valid:

ASM X

ASM GAMMA

The two-pass assembler is automatically executed. If assembly
errors occur during the second pass, the errors are printed at the
console.

The assembler produces a file

x.PRN

where x is the primary name specified in the ASM command. The
PRN file contains a listing of the source program (with imbedded
tab characters if present in the source program), along with the
machine code generated for each statement and diagnostic error
messages, if any. The PRN file can be listed at the console using
the TYPE command, or sent to a peripheral device using PIP
(see the PIP command structure below). Note also that the PRN file
contains the original source program, augmented by
miscellaneous assembly information in the leftmost 16 columns
(program addresses and hexadecimal machine code, for example).
Thus, the PRN file can serve as a backup for the original source
file: if the source file is accidentally removed or destroyed, the
PRN file can be edited (see the ED operator’s guide) by removing
the leftmost 16 characters of each line (this can be done by issuing
a single editor “macro’’ command). The resulting file is identical
to the original source file and can be renamed (REN) from PRN to

ASM for subsequent editing and assembly. The file

x.HEX

is also produced which contains 8080 machine language in Intel
“hex” format suitable for subsequent loading and execution (see
the LOAD command). For complete details of CP/M’s assembly
language program, see the “CP/M Assembler Language (ASM)
User’s Guide.”

Similar to other transient commands, the source file for assembly
can be taken from an alternate disk by prefixing the assembly
language file name by a disk drive name. Phus, the command

ASM B:ALPHA<cr>

loads the assembler from the currently logged drive and operates
upon the source program ALPHA.ASM on drive B. The HEX and
PRN files are also placed on drive B in this case.

LOAD ufn cr
The LOAD command reads the file ufn, which is assumed to
contain “hex” format machine code, and produces a memory
image file which can be subsequently executed. The file name ufn
is assumed to be of the form

x.HEX

and thus only the name x need be specified in the command.
The LOAD command creates a file named

x.COM

which marks it as containing machine executable code. The file is
actually loaded into memory and executed when the user types
the file name x immediately after the prompting character “>”
printed by the CCP.

In general, the CCP reads the name x following the prompting
character and looks for a built-in function name. If no function

x.COM

Introduction 27

name is found, the CCP searches the system disk directory for a
file by the name

x.COM

If found, the machine code is loaded into the TPA, and the
program executes. Thus, the user need only LOAD a hex file once;
it can be subsequently executed any number of times by simply
typing the primary name. In this way, the user can “invent” new
commands in the CCP. (Initialized disks contain the transient
commands as COM files, which can be deleted at the user’s
option.) The operation can take place on an alternate drive if the
file name is prefixed by a drive name. Thus

LOAD B:BETA

brings the LOAD program into the TPA from the currently logged
disk and operates upon drive B after execution begins.

It must be noted that the BETA.HEX file must contain valid Intel
format hexadecimal machine code records (as produced by the
ASM program, for example) which begin at 100H, the beginning
of the TPA. Further, the addresses in the hex records must be in
ascending order; gaps in unfilled memory regions are filled with
zeroes by the LOAD command as the hex records are read. Thus,
LOAD must be used only for creating CP/M standard “COM” files
which operate in the TPA. Programs which occupy regions of
memory other than the TPA can be loaded under DDT.

PIP
PIP is the CP/M Peripheral Interchange Program which implements
the basic media conversion operations necessary to load, print,
punch, copy, and combine disk files. The PIP program is initiated by
typing one of the following forms

PIP<cr>
PIP “command line” <cr>

In both cases, PIP is loaded into the TPA and executed. In case 1,
PIP reads command lines directly from the console, prompted
with the character, until an empty command line is typed (i.e., a
single carriage return is issued by the operator). Each successive

x.COM

28 CP/M Reference Manual

command line causes some media conversion to take place
according to the rules shown below. Form 2 of the PIP command
is equivalent to the first, except that the single command line given
with the PIP command is automatically executed, and PIP
terminates immediately with no further prompting of the console
for input command lines. The form of each command line is

destination = source #1, source #2,.... source #n <cr>

where “destination is the file or peripheral device to receive the
data, and “source #1 source #n” represents a series of one or
more files or devices which are copied from left to right to the
destination.

When multiple files are given in the command line (i.e., n>1), the
individual files are assumed to contain ASCII characters, with an
assumed CP/M end-of-file character (ctl-Z) at the end of each file
(see the O parameter to override this assumption). The equal
symbol (=) can be replaced by a left-oriented arrow, if your console
supports this ASCII character, to improve readability. Lower case
ASCII alphabetics are internally translated to upper case to be
consistent with CP/M file and device name conventions. Finally,
the total command line length cannot exceed 255 characters (ctl-E
can be used to force a physical carriage return for lines which
exceed the console width).

The destination and source elements can be unambiguous
references to CP/M source files, with or without a preceding disk
drive name. That is, any file can be referenced with a preceding
drive name (A:, B:, C:, or D:) which defines the particular drive
where the file may be obtained or stored. When the drive name
is not included, the currently logged disk is assumed. Further, the
destination file can also appear as one or more of the source
files, in which case the source file is not altered until the entire
concatenation is complete. If the destination file already exists, it
is removed if the command line is properly formed (it is not
removed if an error condition arises). The following command
lines (with explanations to the right) are valid as input to PIP:

X = Y <cr> Copy to file X from file Y, where
X and Y are unambiguous file
names; Y remains unchanged.

Introduction 29

n
H
n
n
■
n

X = Y,Z <cr> Concatenate files Y and Z and
copy to file X, with Y and
Z unchanged.

X.ASM = Y.ASM,Z.ASM,FIN.ASM <cr>
Create the file X.ASM from the
concatenation of the Y, Z, and
FIN files with type ASM.

NEW.ZOT = B:OLD.ZAP<cr> Move a copy of OLD.ZAP from
drive B to the currently logged
disk; name the file NEW.ZOT.

B:A.U. = B:B.V,A:C.W,D.X <cr> Concatenate file B.V from drive
B with C.W from drive A and
D.X. from the logged disk;
create the file A.U on
drive B.

For more convenient use, PIP allows abbreviated commands for
transferring files between disk drives. The abbreviated forms are

PIP x: = afn <cr>
PIP x: = y:afn <cr>

PIP ufn = y: <cr>

PIP x:ufn = y: <cr>

The first form copies all files from the currently logged disk
which satisfy the afn to the same file names on drive x (x = A...Z).
The second form is equivalent to the first, where the source for
the copy is drive y (y = A...Z). The third form is equivalent to the
command “PIP ufn = y:ufn <cr>” which copies the file given by
ufn from drive y to the file ufn on drive x. The fourth form is
equivalent to the third, where the source disk is explicitly given
by y.

Note that the source and destination disks must be different in
all of these cases. If an afn is specified, PIP lists each ufn which
satisfies the afn as it is being copied. If a file exists by the same
name as the destination file, it is removed upon successful
completion of the copy, and replaced by the copied file.

30 CP/M Reference Manual

The following PIP commands give examples of valid disk-to-disk
copy operations:

B: = *.COM <cr>

A: = B:ZAP* <cr>

ZAP.ASM = B: <cr>

B:ZOT.COM = A: <cr>

B: = GAMMA.BAS <cr>

B: = A:GAMMA.BAS <cr>

Copy all files which have the
secondary name “COM” to drive
B from the current drive.

Copy all files which have the
primary name “ZAP” to drive
A from drive B.

Equivalent to
ZAP.ASM = B:ZAP.ASM
Equivalent to
B:ZOT.COM = A:ZOT.COM

Same as
B:GAMMA.BAS = GAMMA.BAS

Same as
B :GAM M A. BAS = A:GAM M A. BAS

PIP also allows reference to physical and logical devices which are
attached to the CP/M system. The device names are the same as
given under the STAT command, along with a number of specially
named devices. The logical devices given in the STAT command are

CON: (console), RDR: (reader), PUN: (punch), and LST: (list)

while the physical devices are

TTY: (console, reader, punch, or list)
CRT: (console, or list),
PTR: (reader),
PTP: (punch),
LPT: (list),

UR1: (reader),
UP1: (punch),
UL1: (list)

UC1: (console)
UR2: (reader)
UP2: (punch)

(Note that the “BAT:” physical device is not included, since this
assignment is used only to indicate that the RDR: and LST: devices
are to be used for console input/output.)

The RDR, LST, PUN, and CON devices are all defined within the
BIOS portion of CP/M. (The current physical device mapping is

B:ZOT.COM
B:ZOT.COM
A:ZOT.COM

Introduction 31

defined by IOBYTE; see the “CP/M Interface Guide” for a
discussion of this function.). The destination device must be capable
of receiving data (i.e., data cannot be sent to the punch), and the
source devices must be capable of generating data (i.e., the LST:
device cannot be read).

The additional device names which can be used in PIP commands
are

NUL: Send 40 “nulls” (ASCII 0’s) to the device (this
can be issued at the end of punched output).

EOF: Send a CP/M end-of-file (ASCII ctl-Z) to the
destination device (sent automatically at the end
of all ASCII data transfers through PIP).

INP: Special PIP input source which can be “patched”
into the PIP program itself: PIP gets the input data
character-by-character by CALLing location
103H, with data returned in location 109H (parity
bit must be zero).

OUT: Special PIP output destination which can be
patched into the PIP program: PIP CALLs location
106H with data in register C for each character
to transmit. Note that locations 109H through
1FFH of the PIP memory image are not used and
can be replaced by special purpose drivers
using DDT (see the DDT operator’s manual).

PRN: Same as LST:, except that tabs are expanded
at every eighth character position, lines are
numbered, and page ejects are inserted every
60 lines, with an initial eject (same as [t8np]).

File and device names can be interspersed in the PIP commands.
In each case, the specific device is read until end-of-file (ctl-Z for
ASCII files, and a real end of file for non-ASCII disk files). Data
from each device or file is concatenated from left to right until
the last data source has been read. The destination device or file is
written using the data from the source files, and an end-of-file
character (ctl-Z) is appended to the result for ASCII files. Note that
if the destination is a disk file, a temporary file is created ($$$
secondary name) which is changed to the actual file name only

32 CP/M Reference Manual

upon successful completion of the copy. Files with the extension
“COM” are always assumed to be non-ASCIL

The copy operation can be aborted at any time by depressing any
key on the keyboard (a rubout suffices). PIP will respond with the
message “ABORTED” to indicate that the operation was not
completed. Note that if any operation is aborted, or if an error
occurs during processing, PIP removes any pending commands
which were set up while using the SUBMIT command.

It should also be noted that PIP performs a special function if the
destination is a disk file with type “HEX” (an Intel hex formatted
machine code file), and the source is an external peripheral
device, such as a paper tape reader. In this case, the PIP program
checks to ensure that the source file contains a properly formed
hex file, with legal hexadecimal values and checksum records.
When an invalid input record is found, PIP reports an error
message at the console and waits for corrective action. For
convenience, PIP allows the end-of-file to be entered from the
console if the source file is a RDR: device. In this case, the PIP
program reads the device and monitors the keyboard. If ctl-Z is
typed at the keyboard, then the read operation is terminated
normally.

Valid PIP commands are shown below.

PIP LST: = X.PRN <cr> Copy X.PRN to the LST device and
terminate the PIP program.

PIP <cr> Start PIP for a sequence of commands
(PIP prompts with “*”).

*CON: = X.ASM,Y.ASM,Z.ASM <cr>
Concatenate three ASM files and
copy to the CON device.

*X.HEX = CON:,Y.HEX,PTR: <cr>
Create a HEX file by reading CON
(until a ctl-Z is typed), followed by
data from Y.HEX, followed by data
from PTR until a ctl-Z is encountered.

*<cr> Single carriage return stops PIP.

Introduction 33

PIP PUN: = NUL:,X.ASM,EOF:,NUL: <cr>
Send 40 nulls to the punch device;
then copy the X.ASM file to the
punch, followed by an end-of-file
(ctl-Z) and 40 more null characters.

The user can also specify one or more PIP parameters, enclosed in
left and right square brackets, separated by zero or more blanks.
Each parameter affects the copy operation, and the enclosed list of
parameters must immediately follow the affected file or device.
Generally, each parameter can be followed by an optional decimal
integer value (the S and Q parameters are exceptions). The valid
PIP parameters are listed below.

B Block mode transfer: data is buffered by PIP until
an ASCII x-off character (ctl-S) received from the
source device. This allows transfer of data to a
disk file from a continuous reading device, such
as a cassette reader. Upon receipt of the x-off,
PIP clears the disk buffers and returns for more
input data. The amount of data which can be
buffered is dependent upon the memory size of
the host system (PIP will issue an error message
if the buffers overflow).

Dn Delete characters which extend past column n in
the transfer of data to the destination from the
character source. This parameter is used most
often to truncate long lines which are sent to a
(narrow) printer or console device.

E Echo all transfer operations to the console as
they are being performed.

F Filter form feeds from the file. All imbedded
form feeds are removed. The P parameter can be
used simultaneously to insert new form feeds.

34 CP/M Reference Manual

Gn

H

O

Pn

QsTz

Get file from user number n. (n is the range
0-15.) Allows one user area to receive data files
from another. If the operator has issued the
USER 4 command at the CCP level, the
PIP statement

PIPX.Y = X.Y[G2]
reads file X.Y from user number 2 into user area
number 4. You cannot copy files into a different
area than the one which is currently addressed
by the USER command.

Hex data transfer: all data is checked for proper
Intel hex file format. Non-essential characters
between hex records are removed during the
copy operation. The console will be prompted for
corrective action in case errors occur.
Ignore “:00” records in the transfer of Intel
hex format file (the I parameter automatically
sets the H parameter).

Translate upper case alphabetics to lower case.

Add line numbers to each line transferred to
the destination, starting at one, and incrementing
by 1. Leading zeroes are suppressed, and the
number is followed by a colon. If N2 is specified,
then leading zeroes are included, and a tab is
inserted following the number. The tab is
expanded if T is set.
Object file (non-ASCII) transfer: the normal
CP/M end of file is ignored.

Include page ejects at every n lines (with an
initial page eject). If n = 1 or is excluded
altogether, page ejects occur every 60 lines. If
the F parameter is used, form feed suppression
takes place before the new page ejects are
inserted.

Quit copying from the source device or file
when the string s (terminated by ctl-Z) is
encountered.

Introduction 35

R Read system files. Allows files with the system
attribute to be included in PIP transfers.
Otherwise, system files are not recognized.

SsTz Start copying from the source device when
the string s is encountered (terminated by ctl-Z).
The S and Q parameters can be used to
“abstract” a particular section of a file (such as
a subroutine). The start and quit strings are always
included in the copy operation.

Note

The strings following the s and q parameters are translated
to upper case by the CCP if form (2) of the PIP command
is used. Form (1) of the PIP invocation, however, does not
perform the automatic upper case translation.

(1) PIP<cr>
(2) PIP “command line” <cr>

Tn Expand tabs (ctl-l characters) to every nth column
during the transfer of characters to the
destination from the source.

U Translate lower case alphabetics to upper case
during the copy operation.

V Verify that data has been copied correctly by
rereading after the write operation (the
destination must be a disk file).

W Write over R/O files without console interrogation.
Under a normal operation, PIP will not
automatically overwrite a file which is set to
a permanent R/O status. It advises the user of
the R/O status and waits for overwrite approval.
W allows the user to bypass this interrogation
process.

Z Zero the parity bit on input for each
ASCII character.

36 CP/M Reference Manual

The following are valid PIP commands which specify parameters
in the file transfer:

PIP X.ASM = B:[v] <cr> Copy X.ASM from drive B to the
current drive and verify that the data
was properly copied.

PIP LST: = X.ASM[nt8u] <cr>
Copy X.ASM to the LST: device;
number each line, expand tabs to
every eighth column, and translate
lower case alphabetics to upper case.

PIP PUN: = X.HEX[i],Y.ZOT[h] <cr>
First copy X.HEX to the PUN: device
and ignore the trailing “:00” record
in X.HEX; then continue the transfer
of data by reading Y.ZOT, which
contains hex records, including any
“:00” records which it contains.

PIP X.LIB = Y.ASM [sSUBRI :Tz qJMP L3?z] <cr>
Copy from the file Y.ASM into the file
X.LIB. Start the copy when the string
“SUBR1:” has been found, and quit
copying after the string “JMP L3” is
encountered.

PIP LST: = X.ASM[p50] Send X.ASM to the LST: device, with
line numbers, tabs expanded to every
eighth column, and page ejects at
every 50th line. Note that nt8p60 is
the assumed parameter list for a LST
file; p50 overrides the default value.

Note that the PIP program itself is initially copied to a user area (so
that subsequent files can be copied) using the SAVE command.
The sequence of operations shown below effectively moves PIP
from one user area to the next.

Introduction 37

USERO
DDT PIRCOM
(note PIP size s)
GO
USER 3
SAVE s PIP.com

login user 0
load PIP in memory

return to CCP
login user 3

where s is the integral number of memory “pages” (256 byte
segments) occupied by PIP. The number s can be determined
when PIP.COM is located under DDT, by referring to the value
under the “NEXT” display. If for example, the next available
address is 1D00, then PIP.COM requires 1C hexadecimal pages (or
1 times 16+12 = 28 pages), and thus the value of s is 28 in the
subsequent save. Once PIP is copied in this manner, it can then be
copied to another disk belonging to the same user number
through normal PIP transfers.

ED
The ED program is the CP/M system context editor, which allows
creation and alteration of ASCII files in the CP/M environment.
Complete details of operation are given in Chapter 3 CP/M ED. In
general, ED allows the operator to create and operate upon
source files which are organized as a sequence of ASCII characters,
separated by end-of-line characters (a carriage-return line-feed
sequence). There is no practical restriction on line length (no single
line can exceed the size of the working memory), which is
instead defined by the number of characters typed between <cr>’s.
The ED program has a number of commands for character string
searching, replacement, and insertion, which are useful in the
creation and correction of programs or text files under CP/M.
Although the CP/M has a limited memory work space area,
the file size which can be edited is not limited, since data is easily
“paged” through this work area.

Upon initiation, ED creates the specified source file, if it does not
exist, and opens the file for access. The programmer then
“appends” data from the source file into the work area, if the
source file already exists (see the A command), for editing. The
appended data can then be displayed, altered, and written from the

PIP.com
PIP.COM
PIP.COM

38 CP/M Reference Manual

work area back to the disk (see the W command). Particular
points in the program can be automatically paged and located by
context (see the N command), allowing easy access to particular
portions of a large file.

Given that the operator has typed

ED X.ASM <cr>

the ED program creates an intermediate work file with the name

X.$$$

to hold the edited data during the ED run. Upon completion of ED,
the X.ASM file (original file) is renamed to X.BAK, and the edited
work file is renamed to X.ASM. Thus, the X.BAK file contains the
original (unedited) file, and the X.ASM file contains the newly
edited file. The operator can always return to the previous version
of a file by removing the most recent version, and renaming the
previous version. Suppose, for example, that the current X.ASM
file was improperly edited; the sequence of CCP commands
shown below would reclaim the backup file.

DIRX.* Check to see that BAK file is
available.

ERA X.ASM Erase most recent version.
REN X.ASM = X.BAK Rename the BAK file to ASM.

Note that the operator can abort the edit at any point (reboot,
power failure, ctl-C, or Q command) without destroying the original
file. In this case, the BAK file is not created, and the original file
is always intact.

The ED program also allows the user to “ping-pong” the source and
create backup files between two disks. The form of the ED
command in this case is

ED ufnd:

where ufn is the name of a file to edit on the currently logged disk
and d is the name of an alternate drive. The ED program reads

Introduction 39

n
■
■

n
n
■

and processes the source file, and writes the new file to drive d,
using the name ufn. Upon completion of processing, the original
file becomes the backup file. Thus, if the operator is addressing
disk A, the following command is valid:

ED X.ASM B:

which edits the file X.ASM on drive A, creating the new file
X.$$$ on drive B. Upon completion of a successful edit, A:X.ASM is
renamed to A:X.BAK, and B:X.$$$ is renamed to B:X.ASM. For
user convenience, the currently logged disk becomes drive B at
the end of the edit. Note that if a file by the name B:X.ASM
exists before the editing begins, the message

FILE EXISTS

is printed at the console as a precaution against accidentally
destroying a source file. In this case, the operator must first
ERAse the existing file and then restart the edit operation.

Similar to other transient commands, editing can take place on a
drive different from the currently logged disk by preceding the
source file name by a drive name. Examples of valid edit requests
are shown below

ED A:X.ASM Edit the file X.ASM on drive A,
with new file and backup on
drive A.

ED B:X.ASM A: Edit the file X.ASM on drive B
to the temporary file X.$$$ on
drive A. On termination of
editing, change X.ASM on drive
B to X.BAK, and change X.$$$
on drive A to X.ASM.

ED takes file attributes into account. If the operator attempts to
edit a read/only file, the message

FILE IS READ/ONLY

appears at the console. The file can be loaded and examined, but
cannot be altered in any way. Normally the operator simply ends

40 CP/M Reference Manual

the edit session, and uses STAT to change the file attribute to R/W.
If the edited file has the system attribute set, the message

“SYSTEM” FILE NOT ACCESSIBLE

is displayed at the console, and the edit session is aborted.
Again, the STAT program can be used to change the system
attribute if desired.

SUBMIT
The SUBMIT command allows CP/M commands to be batched
together for automatic processing. The format of SUBMIT is:

SUBMIT ufn parm #1...parm #n<cr>

The ufn given in the SUBMIT command must be the filename of
a file which exists on the currently logged disk, with an assumed
file type of “SUB.” The SUB file contains CP/M prototype
commands, with possible parameter substitution. The actual
parameters parm #1 ... parm #n are substituted into the prototype
commands, and, if no errors occur, the file of substituted
commands is processed sequentially by CP/M.

The prototype command file is created using the ED program, with
interspersed “$” parameters of the form

$1 $2 $3 ... $n

corresponding to the number of actual parameters which will be
included when the file is submitted for execution. When the SUBMIT
transient is executed, the actual parameters parm #1 ... parm #n
are paired with the formal parameters $1 ...$n in the prototype
commands. If the number of formal and actual parameters does
not correspond, then the submit function is aborted with an error
message at the console. The SUBMIT function creates a file of
substituted commands with the name

$$$.SUB

on the logged disk. When the system reboots (at the termination of

Introduction 41

the SUBMIT), this command file is read by the CCP as a source
of input, rather than the console. If the SUBMIT function is
performed on any disk other than drive A, the commands are not
processed until the disk is inserted into drive A and the system
reboots. Further, the user can abort command processing at any
time by typing a rubout when the command is read and echoed. In
this case, the $$$.SUB file is removed, and the subsequent
commands come from the console. Command processing is also
aborted if the CCP detects an error in any of the commands.
Programs which execute under CP/M can abort processing of
command files when error conditions occur by simply erasing
any existing $$$.SUB file.

In order to introduce dollar signs into a SUBMIT file, the user may
type a “$$” which reduces to a single “$” within the command
file. Further, an up-arrow symbol “T” may precede an alphabetic
character x, which produces a single ctl-x character within the
file.

The last command in a SUB file can initiate another SUB file, thus
allowing chained batch commands.

Suppose the file ASMBL.SUB exists on disk and contains the
prototype commands

ASM $1
DIR $1.*
ERA*.BAK
PIP $2 = $1.PRN
ERA $1.PRN

and the command

SUBMIT ASMBL X PRN <cr>

is issued by the operator. The SUBMIT program reads the
ASMBL.SUB file, substituting “X” for all occurrences of $1 and
“PRN” for all occurrences of $2, resulting in a $$$.SUB file

42 CP/M Reference Manua

containing the commands

ASM X
DIR X*
ERA*.BAK
PIP PRN: = X.PRN
ERAX.PRN

which are executed in sequence by the CCP.

The SUBMIT function can access a SUB file which is on an alternate
drive by preceding the file name by a drive name. Submitted
files are only acted upon, however, when they appear on drive A.
Thus, it is possible to create a submitted file on drive B which is
executed at a later time when it is inserted in drive A.

XSUB
XSUB extends the power of the SUBMIT facility to include character
input during program execution as well as entering command
lines. The XSUB command is included as the first line of your
submit file and, when executed, self-relocates directly below the
CCP.

All subsequent submit command lines are processed by XSUB, so
that programs which read buffered console input (BDOS function
10) receive their input directly from the submit file. For example,
the file SAVER.SUB could contain the submit lines:

XSUB
DDT
l$1.HEX
R
GO
SAVE 1 $2.COM

with a subsequent SUBMIT command:

SUBMIT SAVER XY

which substitutes X for $1 and Y for $2 in the command stream.

2.COM

Introduction 43

The XSUB program loads, followed by DDT which is sent the
command lines “IX.HEX” “R” and “GO,” thus returning to the CCP.
The final command “SAVE 1 Y.COM” is processed by the CCP.

The XSUB program remains in memory, and prints the message

(xsub active)

on each warm start operation to indicate its presence. Subsequent
submit command streams do not require the XSUB, unless an
intervening cold start has occurred. Note that XSUB must be
loaded after DESPOOL, if both are to run simultaneously.

DUMP
The DUMP program types the contents of the disk file (ufn) at the
console in hexadecimal form. The file contents are listed sixteen
bytes at a time, with the absolute byte address listed to the left of
each line in hexadecimal. Long typeouts can be aborted by
pushing the rubout key during printout. (The source listing of the
DUMP program is given in the “CP/M Interface Guide” as an
example of a program written for the CP/M environment.)

BDOS Error Messages

There are three error situations which the Basic Disk Operating
System intercepts during file processing. When one of these
conditions is detected, the BDOS prints the message:

BDOS ERR ON x: error

where x is the drive name, and “error” is one of the three error
messages:

BAD SECTOR
SELECT
R/O

The “BAD SECTOR” message indicates that the disk controller
electronics has detected an error condition in reading or writing

44 CP/M Reference Manual

the diskette. This condition is generally due to a malfunctioning
disk controller, or an extremely worn diskette. If you find that
your system reports this error more than once a month, you should
check the state of your controller electronics, and the condition
of your media. In any case, recovery from this condition is
accomplished by typing a ctl-C to reboot (this is the safest!), or a
return, which simply ignores the bad sector in the file operation.
Note, however, that typing a return may destroy your diskette
integrity if the operation is a directory write, so make sure you
have adequate backups in this case.

The “SELECT” error occurs when there is an attempt to address a
drive beyond the A through D range. In this case, the value of x in
the error message gives the selected drive. The system reboots
following any input from the console.

The R/O (read only) message occurs when there is an attempt to
write to a diskette which has been designated as read-only in a
STAT command, or has been set to read-only by the BDOS. In
general, the operator should reboot CP/M either by using the
warm start procedure ctl-C or by performing a cold start whenever
the diskettes are changed. If a changed diskette is to be read but
not written, BDOS allows the diskette to be changed without the
warm or cold start, but internally marks the drive as read-only.
The status of the drive is subsequently changed to read/write for
input from the console. An automatic warm start takes place
following any input.

CP/M 2.0 Interface Guide 45

46 CP/M Reference Manual

2
CP/M 2.0 Interface Guide

Introduction

This manual describes CP/M, release 2, system organization
including the structure of memory and system entry points. The
intention is to provide the necessary information required to write
programs which operate under CP/M, and which use the peripheral
and disk I/O facilities of the system.

CP/M is logically divided into four parts, called the Basic I/O
System (BIOS), the Basic Disk Operating System (BDOS), the
Console command processor (CCP), and the Transient Program
Area (TPA). The BIOS is a hardware-dependent module which
defines the exact low level interface to a particular computer
system which is necessary for peripheral device I/O. The BIOS and
BDOS are logically combined into a single module with a common
entry point, and referred to as the FDOS. The CCP is a distinct
program which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the backup
storage device. The TPA is an area of memory (i.e., the portion
which is not used by the FDOS and CCP) where various non-
resistant operating system commands and user programs are
executed. The lower portion of memory is reserved for system
information and is detailed in later sections.

CP/M 2.0 Interface Guide 47

Memory organization of the CP/M system is shown below:

high memory

FBASE:
FDOS (BDOS + BIOS)

CBASE:
CCP

TPA

TBASE:

BOOT: system parameters

Base addresses for the two Apple memory configurations that
can be used with CP/M are shown in the table below:

Module 44K 56K (Language Card)
CCP 9400H C400H
BDOS 9C00H CC00H
BIOS AA00H DA00H
Top of RAM AFFFH DFFFH

All standard CP/M versions assume BOOT=OOOOH, which is the
base of random access memory. The machine code found at
location BOOT performs a system “warm start” which loads and
initializes the programs and variables necessary to return control

48 CP/M Reference Manual

to the CCP. Thus, transient programs need only jump to location
BOOT to return control to CP/M at the command level. Further,
the standard versions assume TBASE=BOOT+0100H which is
normally location 01 OOH. The principal entry point to the FDOS
is at location BOOT+0005H (normally 0005H) where a jump to
FBASE is found. The address field at BOOT+OOO6H (normally
0006H) contains the value of FBASE and can be used to determine
the size of available memory, assuming the CCP is being
overlayed by a transient program.

Transient programs are loaded into the TPA and executed as
follows. The operator communicates with the CCP by typing
command lines following each prompt. Each command line takes
one of the forms:

command
command filel
command filel file2

where “command” is either a built-in function such as DIR or
TYPE, or the name of a transient command or program. If the
command is a built-in function of CP/M, it is executed immediately.
Otherwise, the CCP searches the currently addressed disk for a
file by the name

command.COM

If the file is found, it is assumed to be a memory image of a
program which executes in the TPA, and thus implicitly originates
at TBASE in memory. The CCP loads the COM file from the disk
into memory starting at TBASE and possibly extending up to
CBASE.

If the command is followed by one or two file specifications, the
CCP prepares one or two file control block (FCB) names in the
system parameter area. These optional FCB’s are in the form
necessary to access files through the FDOS, and are described
in the next section.

command.COM

CP/M 2.0 Interface Guide 49

The transient program receives control from the CCP and begins
execution, perhaps using the I/O facilities of the FDOS. The
transient program is “called” from the CCP, and thus can simply
return to the CCP upon completion of its processing, or can jump
to BOOT to pass control back to CP/M. In the first case, the
transient program must not use memory above CBASE, while in
the latter case, memory up through FBASE-1 is free.

The transient program may use the CP/M I/O facilities to
communicate with the operator’s console and peripheral devices,
including the disk subsystem. The I/O system is accessed by
passing a “function number” and an “information address” to CP/M
through the FDOS entry point at BOOT+005H. In the case of a
disk read, for example, the transient program sends the number
corresponding to a disk read, along with the address of an FCB
to the CP/M FDOS. The FDOS, in turn, performs the operation and
returns with either a disk read completion indication or an error
number indicating that the disk read was unsuccessful. The function
numbers and error indicators are given below.

50 CP/M Reference Manual

Operating System Call Conventions

The purpose of this section is to provide detailed information for
performing direct operating system calls from user programs.

CP/M facilities which are available for access by transient
programs fall into two general categories: simple device I/O, and
disk file I/O. The simple device operations include:

Read a Console Character
Write a Console Character
Read a Sequential Tape Character
Write a Sequential Tape Character
Write a List Device Character
Get or Set I/O Status
Print Console Buffer
Read Console Buffer
Interrogate Console Ready

The FDOS operations which perform disk Input/Output are

Disk System Reset
Drive Selection
File Creation
File Open
File Close
Directory Search
File Delete
File Rename
Random or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address
Set/Reset File Indicators

As mentioned above, access to the FDOS functions is accomplished
by passing a function number and information address through
the primary entry point at location BOOT+OOG5H. In general, the
function number is passed in register C with the information
address in the double byte pair DE. Single byte values are returned

CP/M 2.0 Interface Guide 51

n
n
n
R
R
R
n
R
R
■
■
HI
II
n

■
■
R
R

in register A, with double byte values returned in HL (a zero
value is returned when the function number is out of range). For
reasons of compatibility, register A=L and register B=H upon
return in all cases. The CP/M function numbers are:

0 System Reset
1 Console Input
2 Console Output
3 Reader Input
4 Punch Output
5 List Output
6 Direct Console I/O
7 Get I/O Byte
8 Set I/O Byte
9 Print String

10 Read Console Buffer
11 Get Console Status
12 Return Version Number
13 Reset Disk System
14 Select Disk
15 Open File
16 Close File
17 Search for First
18 Search for Next

19 Delete File
20 Read Sequential
21 Write Sequential
22 Make File
23 Rename File
24 Return Login Vector
25 Return Current Disk
26 Set DMA Address
27 Get Addr (Alloc)
28 Write Protect Disk
29 Get R/O Vector
30 Set File Attributes
31 Get Addr (Disk Parms)
32 Set/Get User Code
33 Read Random
34 Write Random
35 Compute File Size
36 Set Random Record

(Functions 28 and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack
pointer set to an eight level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow
occurs. Although this stack is usually not used by a transient
program (i.e., most transients return to the CCP through a jump
to location 0000H), it is sufficiently large to make CP/M system
calls since the FDOS switches to a local stack at system entry.
The following assembly language program segment, for example,
reads characters continuously until an asterisk is encountered, at
which time control returns to the CCP (assuming a standard CP/M
system with BOOT+OOOOH):

52 CP/M Reference Manual

BDOS
CONIN

EQU
EQU

0005 H
1

STANDARD CP/M ENTRY
;CONSOLE INPUT FUNCTION

ORG 01 OOH ;BASEOFTPA
NEXTC: MVI C,CONIN ;READ NEXT CHARACTER

CALL BDOS ;RETURN CHARACTER IN <A>
CPI ;ENDOF PROCESSING?
JNZ NEXTC ;LOOP IF NOT
RET ;RETURN TO CCP
END

CP/M implements a named file structure on each disk, providing a
logical organization which allows any particular file to contain
any number of records from completely empty to the full capacity
of the drive. Each drive is logically distinct with a disk directory
and file data area. The disk file names are in three parts: the drive
select code, the file name consisting of one to eight non-blank
characters, and the file type consisting of zero to three non-blank
characters. The file type names the generic category or a
particular file, while the file name distinguishes individual files in
each category. The file types listed below name a few generic
categories which have been established, although they are generally
arbitrary:

ASM Assembler Source
PRN Printer Listing
HEX Hex Machine Code
BAS Basic Source File
INT Intermediate Code
COM CCP Command File

PLI PL/I Source File
REL Relocatable Module
TEX TEX Formatter Source
BAK ED Source Backup
SYM SID Symbol File
$$$ Temporary File

Source files are treated as a sequence of ASCII characters, where
each “line” of the source file is followed by a carriage-return
line-feed sequence (ODH followed by OAH). Thus one 128 byte
CP/M record could contain several lines of source text. The end
of an ASCII file is denoted by a control-Z character (1 AH) or a real
end of file, returned by the CP/M read operation. Control-Z
characters embedded within machine code files (e.g., COM files)
are ignored, however, and the end of file condition returned by
CP/M is used to terminate read operations.

CP/M 2.0 Interface Guide 53

Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from 0 through 65535,
thus allowing a maximum of 8 megabytes per file. Note, however,
that although the records may be considered logically contiguous,
they may not be physically contiguous in the disk data area.
Internally, all files are broken into 16K byte segments called
logical extents, so that counters are easily maintained as 8-bit
values. Although the decomposition into extents is discussed in
the paragraphs which follow, they are of no particular consequence
to the programmer since each extent is automatically accessed
in both sequential and random access modes.

In the file operations starting with function number 15, DE usually
addresses a file control block (FOB). Transient programs often
use the default file control block area reserved by CP/M at location
BOOT+005CH (normally 005CH) for simple file operations. The
basic unit of file information is a 128 byte record used for all file
operations, thus a default location for disk I/O is provided by
CP/M at location BOOT+0080H (normally 0080H) which is the
initial default DMA address (see function 26). All directory
operations take place in a reserved area which does not affect
write buffers as was the case in release 1, with the exception of
Search for First and Search for Next, where compatibility
is required.

The File Control Block (FCB) data area consists of a sequence of
33 bytes for sequential access and a series of 36 bytes in the
case that the file is accessed randomly. The default file control
block normally located at 005CH can be used for random access
files, since the three bytes starting at BOOT+007DH are available
for this purpose. The FCB format is shown with the following fields:

00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

dr f1 f2 / / f8 t1 t2 t3 ex s1 s2 rc dO / / dn cr rO r1 r2

54 CP/M Reference Manual

where

dr

f1 ...f8

11,t2,t3

ex

s1
s2

rc

dO ... dn

cr

rO, r 1,r2

drive code (0-16)
0=>use default drive for file
1=>auto disk select drive A,
2=>auto disk select drive B,

16=>auto disk select drive P.

contain the file name in ASCII upper case,
with high bit=o

contain the file type in ASCII upper case,
with high bit=O
11 ’,t 2’, and t3’ denote the bit of these
positions,
t1 ’=1=>Read/Only file,
t2’=1=>SYS file,no DIR list
contains the current extent number,
normally set to 00 by the user, but in range
0 - 31 during file I/O
reserved for internal system use

reserved for internal system use, set to zero
on call to OPEN, MAKE, SEARCH

record count for extent “ex,” takes on values
from 0-128
filled-in by CP/M, reserved for system use

current record to read or write in a
sequential file operation, normally set to
zero by user
optional random record number in the range
0-65535, with overflow to r 2, rO, r1 constitute
a 16-bit value with low byte rO, and high
byte r 1

CP/M 2.0 Interface Guide 55

II
II
■
II

■

Each file being accessed through CP/M must have a corresponding
FCB which provides the name and allocation information for all
subsequent file operations. When accessing files, it is the
programmer’s responsibility to fill the lower sixteen bytes of the
FCB and initialize the “cr” field. Normally, bytes 1 through 11 are
set to the ASCII character values for the file name and file type,
while all other fields are zero.

FCB’s are stored in a directory area of the disk, and are brought
into central memory before proceeding with file operations (see
the OPEN and MAKE functions). The memory copy of the FCB is
updated as file operations take place and later recorded permanently
on disk at the termination of the file operation (see the CLOSE
command).

The CCP constructs the first sixteen bytes of two optional FCB’s for
a transient by scanning the remainder of the line following the
transient name, denoted by “filel ” and “file2” in the prototype
command line described above, with unspecified fields set to
ASCII blanks. The first FCB is constructed at location BOOT+005CH,
and can be used as-is for subsequent file operations. The second
FCB occupies the d). . . dn portion of the first FCB, and must be
moved to another area of memory before use. If, for example,
the operator types

PROGNAME B:X.ZOT Y.ZAP

the file PROGNAME. COM is loaded into the TPA, and the default
FCB at BOOT+005CH is initialized to drive code 2, file name “X”
and file type “ZOT.” The second drive code takes the default value
0, which is placed at BOOT+006CH, with the file name “Y”
placed into location BOOT+006DH and file type “ZAP” located 8
bytes later at BOOT+OQ75H. All remaining fields through “cr”
are set to zero. Note again that it is the programmer's responsibility
to move this second file name and type to another area, usually a
separate file control block, before opening the file which begins at
BOOT+005CH, due to the fact that the open operation will
overwrite the second name and type.

If no file names are specified in the original command, then the
fields beginning at BOOT+OQ5DH and BOOT+OQ6DH contain

56 CP/M Reference Manual

blanks. In all cases, the CCP translates lower case alphabetics to
upper case to be consistent with the CP/M file naming
conventions.

As an added convenience, the default buffer area at location
BOOT+OO8OH is initialized to the command line tail typed by the
operator following the program name. The first position contains
the number of characters, with the characters themselves following
the character count. Given the above command line, the area
beginning at BOOT+OO8OH is initialized as follows:

BOQT+0080H:
+00+01 +02 +03+04 +05 +06 +07 +08 +09+10+11 +12+13+14

where the characters are translated to upper case ASCII with
uninitialized memory following the last valid character. Again, it
is the responsibility of the programmer to extract the information
from this buffer before any file operations are performed, unless
the default DMA address is explicitly changed.

The individual functions are described in detail in the pages which
follow.

Function 0: System Reset

Entry Parameters:

Register C: OOH

The system reset function returns control to the CP/M operating
system at the CCP level. The CCP re-initializes the disk subsystem
by selecting and logging-in disk drive A. This function has exactly
the same effect as a jump to location BOOT.

CP/M 2.0 Interface Guide 57

Function 1: Console Input

Entry Parameters:

Register C: 01H

Returned Value:

Register A: ASCII Character

The console input function reads the next console character to
register A. Graphic characters, along with carriage return, line
feed, and backspace (ctl-H) are echoed to the console. Tab
characters (ctl-l) are expanded in columns of eight characters. A
check is made for start/stop scroll (ctl-S) and start/stop printer
echo (ctl-P). The FDOS does not return to the calling program
until a character has been typed, thus suspending execution of a
character if not ready.

Function 2: Console Output

Entry Parameters:

Register C: 02H
Register E: ASCII Character

The ASCII character from register E is sent to the console
device. Similar to function 1, tabs are expanded and checks are
made for start/stop scroll and printer echo.

Function 3: Reader Input
Entry Parameters:

Register C: 03H

Returned Value:

Register A: ASCII Character

The Reader Input function reads the next character from the
logical reader into register A. Control does not return until the
character has been read.

58 CP/M Reference Manual

Function 4: Punch Output

Entry Parameters:

Register C: 04H
Register E: ASCII Character

The Punch Output function sends the character from register E to
the logical punch device.

Function 5: List Output

Entry Parameters:

Register C: 05H
Register E: ASCII Character

The List Output function sends the ASCII character in register E to
the logical listing device.

Function 6: Direct Console I/O

Entry Parameters:

Register C: 06H
Register E: OFFH (input) or

char (output)

Peturned Value:
Register A: char or status

(no value)

Direct console I/O is supported under CP/M for those specialized
applications where unadorned console input and output is
required. Use of this function should, in general, be avoided since
it bypasses all of CP/M’s normal control character functions (e.g.,
control-S and control-P). Programs which perform direct I/O through
the BIOS under previous releases of CP/M, however, should be
changed to use direct I/O under BDOS so that they can be fully
supported under future releases of MP/M and CP/M.

CP/M 2.0 Interface Guide 59

R
n
n
■
■
ii

r
n

R

Upon entry to function 6, register E either contains hexadecimal
FF, denoting a console input request, or register E contains an
ASCII character. If the input value is FF, then function 6 returns
A=00 if no character is ready, otherwise A contains the next
console input character.

If the input value in E is not FF, then function 6 assumes that E
contains a valid ASCII character which is sent to the console.

Function 7: Get I/O Byte

Entry Parameters:

Register C: 07H

Returned Value:

Register A: I/O Byte Value

The Get I/O Byte function returns the current value of IOBYTE in
register A.

Function 8: Set I/O Byte

Entry Parameters:

Register C: 08H
Register E: I/O Byte Value

The Set I/O Byte function changes the system IOBYTE value to
that given in register E.

Function 9: Print String

Entry Parameters:

Register C: 09H
Registers DE: String Address

The Print String function sends the character string stored in
memory at the location given by DE to the console device, until a
“$” is encountered in the string. Tabs are expanded as in function
2, and checks are made for start/stop scroll and printer echo.

60 CP/M Reference Manual

Function 10: Read Console Buffer

Entry Parameters:

Register C: OAH
Registers DE: Buffer Address

Returned Value:

Console Characters in Buffer

The Read Buffer function reads a line of edited console input
into a buffer addressed by registers DE. Console input is terminated
when either the input buffer overflows. The Read Buffer takes
the form:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 ... +n

mx nc c1 c2 c3 c4 c5 c6 c7 . . . ?? I

where “mx" is the maximum number of characters which the buffer
will hold (1 to 255), “nc” is the number of characters read (set by
FDOS upon return), followed by the characters read from the
console. If nc < mx, then uninitialized positions follow the last
character, denoted by “??” in the above figure. A number of control
functions are recognized during line editing:

rub/del
ctl-C
ctl-E
ctl-H
ctl-J
ctl-M
ctl-R
ctl-X

removes and echoes the last character
reboots when at the beginning of line
causes physical end of line
backspaces one character position
(line feed) terminates input line
(return) terminates input line
retypes the current line after new line
backspaces to beginning of current line

Note also that certain functions which return the carriage to the
leftmost position (e.g., ctl-X) do so only to the column position

CP/M 2.0 Interface Guide 61

where the prompt ended (in earlier releases, the carriage returned
to the extreme left margin). This convention makes operator data
input and line correction more legible.

Function 11: Get Console Status

Entry Parameters:

Register C: OBH

Return Value:

Register A: Console Status

The Console Status function checks to see if a character has been
typed at the console. If a character is ready, the value OFFH is
returned in register A. Otherwise a OOH value is returned.

Function 12: Return Version Number

Entry Parameters:

Register C: OCH

Returned Value:

Registers HL: Version Number

Function 12 provides information which allows version independent
programming. A two-byte value is returned, with H=00 designating
the CP/M release (H=01 for MP/M), and L=00 for all releases
previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in register L,
with subsequent version 2 releases in the hexadecimal range 21,
22, through 2F. Using function 12, for example, you can write
application programs which provide both sequential and random
access functions, with random access disabled when operating
under early releases of CP/M.

62 CP/M Reference Manual

Function 13: Reset Disk System

Entry Parameters:

Register C: ODH

The Reset Disk function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see functions 28 and 29), only disk drive A is selected, and the
default DMA address is reset to BOOT+OO8OH. This function can
be used, for example, by an application program which requires a
disk change without a system reboot.

Function 14: Select Disk

Entry Parameters:

Register C: OEH
Register E: Selected Disk

The Select Disk function designates the disk drive named in
register E as the default disk for subsequent file operations, with
E=0 for drive A, 1 for drive B, and so-forth through 15 corresponding
to drive P in a full sixteen drive system. The drive is placed in an
“on-line” status which, in particular, activates its directory until the
next cold start, warm start, or disk system reset operation. If the
disk media is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M environment (see
function 28). FCB’s which specify drive code zero (dr=OOH)
automatically reference the currently selected default drive.
Drive code values between 1 and 16, however, ignore the selected
default drive and directly reference drives A through P.

CP/M 2.0 Interface Guide 63

■
H

■
■
n
H
IV
n
n
n

n
■
M
n

n
n
■

Function 15: Open File

Entry Parameters:

Register C: OFH
Registers DE: FCB Address

Returned Value:

Register A: Directory Code

The Open File operation is used to activate a file which currently
exists in the disk directory for the currently active user number.
The FDOS scans the referenced disk directory for a match in
positions 1 through 14 of the FCB referenced by DE (byte s1 is
automatically zeroed), where an ASCII question mark (3FH)
matches any directory character in any of these positions.
Normally, no question marks are included and, further, bytes “ex”
and “s2” of the FCB are zero.

If a directory element is matched, the relevant directory information
is copied into bytes dO through dn of the FCB, thus allowing
access to the files through subsequent read and write operations.
Note that an existing file must not be accessed until a successful
open operation is completed. Upon return, the open function
returns a “directory code” with the value 0 through 3 if the open
was successful, or OFFH (255 decimal) if the file cannot be found.
If question marks occur in the FCB then the first matching FCB
is activated. Note that the current record (“cr”) must be zeroed by
the program if the file is to be accessed sequentially from the
first record.

64 CP/M Reference Manual

Function 16: Close File

Entry Parameters:

Register C: 10H
Registers DE: FCB Address

Returned Value:

Register A: Directory Code

The Close File function performs the inverse of the open file
function. Given that the FCB addressed by DE has been previously
activated through an open or make function (see functions 15
and 22), the close function permanently records the new FCB in
the referenced disk directory. The FCB matching process for the
close is identical to the open function. The directory code returned
for a successful close operation is 0, 1,2, or 3, while a OFFH
(255 decimal) is returned if the file name cannot be found in the
directory. A file need not be closed if only read operations have
taken place. If write operations have occurred, however, the close
operation is necessary to permanently record the new directory
information.

Function 17: Search for First

Entry Parameters:

Register C: 11H
Registers DE: FCB Address

Returned Value:

Register A: Directory Code

Search for First scans the directory for a match with the file given
by the FCB addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise 0, 1,2, or 3 is returned
indicating the file is present. In the case that the file is found, the
current DMA address is filled with the record containing the
directory entry, and the relative starting position is A *32 (i.e.,
rotate the A register left 5 bits, or ADD A five times). Although

CP/M 2.0 Interface Guide 65

not normally required for application programs, the directory
information can be extracted from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from “f1 ” through “ex” matches the corresponding field of
any directory entry on the default or auto-selected disk drive. If
the “dr” field contains an ASCII question mark, then the auto disk
selected function is disabled, the default disk is searched, with
the search function returning any matched entry, allocated or free,
belonging to any user number. This latter function is not normally
used by application programs, but does allow complete flexibility to
scan all current directory values. If the “dr” field is not a question
mark, the “s2” byte is automatically zeroed.

Function 18: Search for Next

Entry Parameters:

Register C: 12H

Returned Value:

Register A: Directory Code

The Search for Next function is similar to the Search for First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the decimal
value 255 in A when no more directory items match.

Function 19: Delete File
Entry Parameters:

Register
Registers

Returned Value:

Register

C: 13H
DE: FCB Address

A: Directory Code

The Delete File function removes files which match the FCB
addresses by DE. The filename and type may contain ambiguous

66 CP/M Reference Manual

references (i.e., question marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search for
Next functions.

Function 19 returns a decimal 255 if the referenced file or files
cannot be found, otherwise a value in the range 0 to 3 is
returned.

Function 20: Read Sequential

Entry Parameters:

Register C: 14H
Registers DE: FCB Address

Returned Value:

Register A: Directory Code

Given that the FCB addressed by DE has been activated through
an open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory
at the current DMA address. The record is read from position “cr”
of the extent, and the “cr” field is automatically incremented to
the next record position. If the “cr” field overflows then the next
logical extent is automatically opened and the “cr” field is reset
to zero in preparation for the next read operation. The value OOH is
returned in the A register if the read operation was successful,
while a non-zero value is returned if no data exists at the next
record position (e.g., end of file occurs).

Function 21: Write Sequential

Entry Parameters:

Register C: 15H
Registers DE: FCB Address

Returned Value:

Register A: Directory Code

CP/M 2.0 Interface Guide 67

Given that the FCB addressed by DE has been activated through
an open or make function (numbers 15 and 22), the Write
Sequential function writes the 128 byte data record at the current
DMA address to the file named by the FCB. The record is placed
at position “cr” of the file, and the “cr” field is automatically
incremented to the next record position. If the “cr” field overflows
then the next logical extent is automatically opened and the “cr”
field is reset to zero in preparation for the next write operation.
Write operations can take place into an existing file, in which case
newly written records overlay those which already exist in the
file. Register A=00H upon return from a successful write operation,
while a non-zero value indicates an unsuccessful write due to a
full disk.

Function 22: Make File

Entry Parameters:

Register
Registers

Returned Value:

Register

C: 16H
DE: FCB Address

A: Directory Code

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly
by a non-zero “dr” code, or the default disk if “dr” is zero). The
FDOS creates the file and initializes both the directory and main
memory value to an empty file. The programmer must ensure that
no duplicate file names occur, and a preceding delete operation
is sufficient if there is any possibility of duplication. Upon return,
register A=0, 1,2, or 3 if the operation was successful and OFFH
(255 decimal) if no more directory space is available. The make
function has the side-effect of activating the FCB and thus a
subsequent open is not necessary.

68 CP/M Reference Manual

Function 23: Rename File

Entry Parameters:

Register C: 17H
Registers DE: FCB Address

Returned Value:

Register A: Directory Code

The Rename function uses the FCB addressed by DE to change
all occurrences of the file named in the first 16 bytes to the file
named in the second 16 bytes. The drive code “dr” at position 0
is used to select the drive, while the drive code for the new file
name at position 16 of the FCB is assumed to be zero. Upon
return, register A is set to a value between 0 and 3 if the rename
was successful, and OFFH (255 decimal) if the first file name
could not be found in the directory scan.

Function 24: Return Login Vector

Entry Parameters:

Register C: 18H

Returned Value:

Registers HL: Login Vector

The login vector value returned by CP/M is a 16-bit value in HL,
where the least significant bit of L corresponds to the first drive
A, and the high order bit of H corresponds to the sixteenth drive,
labelled P.A “0” bit indicates that the drive is not on-line, while a
“1” bit marks a drive that is actively on-line due to an explicit disk
drive selection, or an implicit drive select caused by a file
operation which specified a non-zero “dr” field. Note that
compatibility is maintained with earlier releases, since registers A
and L contain the same values upon return.

CP/M 2.0 Interface Guide 69

Function 25: Return Current Disk

Entry Parameters:

Register

Returned Value:

Register

C: 19H

A: Current Disk

Function 25 returns the currently selected default disk number
in register A. The disk numbers range from 0 through 15
corresponding to drives A through P.

Function 26: Set DMA Address

Entry Parameters:

Regular
Registers

C: 1AH
DE: DMA Address

“DMA” is an acronym for Direct Memory Address, which is often
used in connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from
the disk subsystem. Although many computer systems use non-DMA
access (i.e., the data is transferred through programmed I/O
operations), the DMA address has, in CP/M, come to mean the
address at which the 128 byte data record resides before a disk
write and after a disk read. Upon cold start, warm start, or disk
system reset, the DMA address is automatically set to
BOOT+0080H. The Set DMA function, however, can be used to
change this default value to address another area of memory where
the data records reside. Thus, the DMA address becomes the
value specified by DE until it is changed by a subsequent Set DMA
function, cold start, warm start, or disk system reset.

70 CP/M Reference Manual

Function 27: Get ADDR [ALLOC)

Entry Parameters:

Register C: 1BH

Returned Value:

Registers HL: ALLOC Address

An “allocation vector” is maintained in main memory for each
on-line disk drive. Various system programs use the information
provided by the allocation vector to determine the amount of
remaining storage (see the STAT program). Function 27 returns the
base address of the allocation vector for the currently selected
disk drive. The allocation information may, however, be invalid if
the selected disk has been marked read/only. Although this
function is not normally used by application programs, additional
details of the allocation vector are found in the “CP/M Alteration
Guide.”

Function 28: Write Protect Disk

Entry Parameters:

Register C: 1CH

The disk write protect function provides temporary write protection
for the currently selected disk. Any attempt to write to the disk,
before the next cold or warm start operation produces the message

Bdos Err on d: R/O

CP/M 2.0 Interface Guide 71

Function 29: Get Read/Only Vector

Entry Parameters:

Register C: 1DH

Returned Value:

Registers HL: R/O Vector Value

Function 29 returns a bit vector in register pair HL which indicates
drives which have the temporary read/only bit set. Similar to
function 24, the least significant bit corresponds to drive A, while
the most significant bit corresponds to drive P. The R/O bit is set
either by the explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

Function 30: Set File Attributes

Entry Parameters:

Register
Registers

Returned Value:

Register

C: 1EH
DE: FCB Address

A: Directory Code

The Set File Attributes function allows programmatic manipulation
of permanent indicators attached to files. In particular, the R/O
and System attributes (t1 ’ and t2’) can be set or reset. The DE pair
addresses an unambiguous file name with the appropriate
attributes set or reset. Function 30 searches for a match, and
changes the matched directory entry to contain the selected
indicators. Indicators f1 ’ through f4’ are not presently used, but
may be useful for applications programs, since they are not
involved in the matching process during file open and close
operations. Indicators f5’ through f8’ and t3’ are reserved for
future system expansion.

72 CP/M Reference Manual

Function 31: Get ADDR [Disk PAR MS)

Entry Parameters:

Register C: 1FH

Returned Value:

Registers HL: DPB Address

The address of the BIOS resident disk parameter block is returned
in HL as a result of this function call. This address can be used
for either of two purposes. First, the disk parameter values can be
extracted for display and space computation purposes, or transient
programs can dynamically change the values of current disk
parameters when the disk environment changes, if required.
Normally, application programs will not require this facility.

Function 32: Set/Get User Code

Entry Parameters:

Register C: 20H
Register E: OFFH (get) or

User Code (set)

Returned Value:
Register A: Current Code or

(no value)

An application program can change or interrogate the currently
active user number by calling function 32. If register E=0FFH, then
the value of the current user number is returned in register A,
where the value is in the range 0 to 31. If register E is not OFFH,
then the current user number is changed to the value of E
(modulo 32).

CP/M 2.0 Interface Guide 73

n
n
H
■
n
ii
H
■
H
H
H
II
■
■
II
II
N
■
n
■
■
ii
H

Function 33: Read Random

Entry Parameters:

Register C: 21H
Registers DE: FCB Address

Returned Value:

Register A: Return Code

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation
takes place at a particular record number, selected by the 24-bit
value constructed from the three byte field following the FCB (byte
positions rO at 33, r1 at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant byte first (rO), middle byte
next (r1), and high byte last (r2). CP/M does not reference byte
r2, except in computing the size of a file (function 35). Byte r2 must
be zero, however, since a non-zero value indicates overflow past
the end of file.

Thus, the rO,r 1 byte pair is treated as a double-byte, or “word”
value, which contains the record to read. This value ranges from
0 to 65535, providing access to any particular record of the 8
megabyte file. In order to process a file using random access,
the base extent (extent 0) must first be opened. Although the base
extent may or may not contain any allocated data, this ensures
that the file is properly recorded in the directory, and is visible in
DIR requests. The selected record number is then stored into
the random record field (rO,r 1), and the BDOS is called to read the
record. Upon return from the call, register A either contains an
error code, as listed below, or the value 00 indicating the operation
was successful. In the latter case, the current DMA address
contains the randomly accessed record. Note that contrary to the
sequential read operation, the record number is not advanced.
Thus, subsequent random read operations continue to read the
same record.

74 CP/M Reference Manual

Upon each random read operation, the logical extent and current
record values are automatically set. Thus, the file can be sequentially
read or written, starting from the current randomly accessed
position. Note, however, that in this case, the last randomly read
record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course, simply
advance the random record position following each random read or
write to obtain the effect of a sequential I/O operation.

Error codes returned in Register A following a random read are
listed below.

01 reading unwritten data
02 (not returning in random mode)
03 cannot close current extent
04 seek to unwritten extent
05 (not returned in read mode)
06 seek past physical end of disk

Error code 01 and 04 occur when a random read operation accesses
a data block which has not been previously written, or an extent
which has not been created, which are equivalent conditions. Error
3 does not normally occur under proper system operation, but
can be cleared by simply re-reading, or re-opening extent zero as
long as the disk is not physically write protected. Error code 06
occurs whenever byte r2 is non-zero under the current 2.0 release.
Normally, non-zero return codes can be treated as missing data,
with zero return codes indicating operation complete.

CP/M 2.0 Interface Guide 75

■
■
■
■
n
■
n
■
■
n
■
■
■
■

n
ii
■
M
n
■
■

Function 34: Write Random

Entry Parameters:

Register C: 22H
Registers DE: FOB Address

Returned Value:

Register A: Return Code

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is
the target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read
Random operation, the random record number is not changed as a
result of the write. The logical extent number and current record
positions of the file control block are set to correspond to the
random record which is being written. Again, sequential read or
write operations can commence following a random write, with the
notation that the currently addressed record is either read or
rewritten again as the sequential operation begins. You can also
simply advance the random record position following each write
to get the effect of a sequential write operation. Note that in
particular, reading or writing the last record of an extent in
random mode does not cause an automatic extent switch as it does
in sequential mode.

The error codes returned by a random write are identical to the
random read operation with the addition of error code 05, which
indicates that a new extent cannot be created due to directory
overflow.

76 CP/M Reference Manual

Function 35: Compute File Size

Entry Parameters:

Register C: 23H
Registers DE: FCB Address

Returned Value:

Random Record Field Set

When computing the size of a file, the DE register pair addresses
an FCB in random mode format (bytes rO, r1, and r2 are present).
The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain
the “virtual” file size which is, in effect, the record address of the
record following the end of the file. If, following a call to function
35, the high record byte r2 is 01, then the file contains the
maximum record count 65536. Otherwise, bytes rO and r1 constitute
a 16-bit value (rO is the least significant byte, as before) which is
the file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end
of file, then performing a sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created in
random mode and “holes” exist in the allocation, then the file
may in fact contain fewer records than the size indicates. If, for
example, only the last record of an eight megabyte file is written
in random mode (i.e., record number 65535), then the virtual size
in 65536 records, although only one block of data is actually
allocated.

CP/M 2.0 Interface Guide 77

Function 36: Set Random Record

Entry Parameters:

Returned Value:

Random Record Field Set

Register
Registers

C: 24H
DE: FCB Address

The Set Random Record function causes the BDOS to automatically
produce the random record position from a file which has been
read or written sequentially to a particular point. The function can
be useful in two ways.

First, it is often necessary to initially read and scan a sequential
file to extract the position of various “key” fields. As each key is
encountered, function 36 is called to compute the random record
position for the data corresponding to this key. If the data unit size
is 128 bytes, the resulting record position is placed into a table
with the key for later retrieval. After scanning the entire file and
tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved
earlier. The scheme is easily generated when variable record
lengths are involved since the program need only store the
buffer-relative byte position along with the key and record number
in order to find the exact starting position of the keyed data at a
later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, function 36 is
called which sets the record number, and subsequent random
read and write operations continue from the selected point in the
file.

78 CP/M Reference Manual
4

Sample File-to-File Copy Program

The program shown below provides a relatively simple example of
file operations. The program source file is created as COPY.ASM
using the CP/M ED program and then assembled using ASM or
MAC, resulting in a “HEX” file. The LOAD program is then used
to produce a COPY.COM file which executes directly under the
CCP. The program begins by setting the stack pointer to a local
area, and then proceeds to move the second name from the default
area at 006CH to a 33-byte file control block called DFCB. The
DFCB is then prepared for file operations by clearing the current
record field. At this point, the source and destination FCB’s are
ready for processing since the SFCB at 005CH is properly set-up
by the CCP upon entry to the COPY program. That is, the first
name is placed into the default FCB, with the proper fields zeroed,
including the current record field at 007CH. The program
continues by opening the source file, deleting any existing
destination file, and then creating the destination file. If all this is
successful, the program loops at the label COPY until each
record has been read from the source file and placed into the
destination file. Upon completion of the data transfer, the destination
file is closed and the program returns to the CCP command level
by jumping to BOOT.

SAMPLE FILE-TO-FILE COPY PROGRAM

AT THE CCP LEVEL, THE COMMAND

COPIES THE FILE NAMED X.Y FROM DRIVE
A TO A FILE NAMED U.V ON DRIVE B.

COPY A:X.Y B:U.V

0000 = BOOT EQU 0000H ; SYSTEM REBOOT
0005 = BDOS EQU 0005 H ; BDOS ENTRY POINT
005C = FCB1 EQU 005CH ; FIRST FILE NAME
005C = SFCB EQU FCB1 ; SOURCE FCB
006C = FCB2 EQU 006CH ; SECOND FILE NAME
0080 = DBUFF EQU 0080H ; DEFAULT BUFFER
0100 = TPA EQU 01 OOH ; BEGINNING OF TPA

0009 = PRINTF EQU 9 ; PRINT BUFFER FUNC#
000F = OPENF EQU 15 ; OPEN FILE FUNC#
0010 = CLOSEF EQU 16 ; CLOSE FILE FUNC#
0013 = DELETEF EQU 19 ; DELETE FILE FUNC#
0014 = READF EQU 20 ; SEQUENTIAL READ
0015 = WRITEF EQU 21 ; SEQUENTIAL WRITE
0016 = MAKEF EQU 22 ; MAKE FILE FUNC#

0100
>

ORG TPA ; BEGINNING OF TPA
0100 311B02 LXI SR STACK ; LOCAL STACK

COPY.COM

CP/M 2.0 Interface Guide 79

R ; MOVE SECOND FILE NAME TO DFCB
0103 0E10 MVI C.16 ; HALF AN FCB
0105 116C00 LXI D.FCB2 ; SOURCE OF MOVE■ 0108 21DA01 LXI H.DFCB ; DESTINATION FCB
010B 1A MFCB: LDAX D ; SOURCE FCB
010C 13 INX D ; READY NEXT
010D 77 MOV M.A ; DEST FCB

■ 010E 23 INX H ; READY NEXT
010F OD DCR C ; COUNT 16 ... 0
0110 C20B01 JNZ MFCB ; LOOP 16 TIMES

■ NAME HAS BEEN MOVED. ZERO CR
0113 AF XRA A ; A = OOH

■ 0114 32FAO1 STA DFCBCR ; CURRENT REC = 0
J

J SOURCE AND DESTINATION FCB'S READY

0117 115C00 LXI D.SFCB SOURCE FILE
011A CD6901 CALL OPEN : ERROR IF 255
011D 118701 LXI D,NOFILE ; READY MESSAGE
0120 3C INR A 255 BECOMES 0
0121 CC6101 CZ FINIS ; DONE IF NO FILE

>
SOURCE FILE OPEN, PREP DESTINATION■ 0124 11DA01 LXI D.DFCB ; DESTINATION

0127 CD7301 CALL DELETE ; REMOVE IF PRESENT

n 012A 11DA01 LXI D.DFCB ; DESTINATION
012D CD8201 CALL MAKE ; CREATE THE FILE
0130 119601 LXI D,NODIR ; READY MESSAGE

■ 0133 3C INR A ; 255 BECOMES 0
0134 CC6101 CZ FINIS ; DONE IF NO DIR SPACE

SOURCE FILE OPEN, DEST FILE OPEN■ COPY UNTIL END OF FILE ON SOURCE

0137 115C00 COPY: LXI D.SFCB ; SOURCE
013A CD7801 CALL READ ; READ NEXT RECORD
013D B7 ORA A END OF FILE?
OWE C25101 JNZ EOFILE ; SKIP WRITE IF SO

NOT END OF FILE, WRITE THE RECORD■M 0141 11DA01 LXI D.DFCB ; DESTINATION
0144 CD7D01 CALL WRITE ; WRITE RECORD
0147 11A901 LXI D,SPACE ; READY MESSAGE
014A B7 ORA A ; 00 IF WRITE OK
014B C46101 CNZ FINIS ; END IF SO
014E C33701 JMP COPY ; LOOP UNTIL EOF

EOFILE: ; END OF FILE, CLOSE DESTINATION
0151 11DA01 LXI D.DFCB ; DESTINATION
0154 CD6E01 CALL CLOSE ; 255 IF ERROR
0157 21BB01 LXI H.WRPROT ; READY MESSAGE
015A 3C INR A ; 255 BECOMES 00

■ 015B CC6101
J

CZ FINIS ; SHOULDN'T HAPPEN

J COPY OPERATION COMPLETE, END
OWE 11CC01 LXI D,NORMAL ; READY MESSAGEn FINIS: ; WRITE MESSAGE GIVEN BY DE, REBOOT
0161 0E09 MVI C.PRINTF
0163 CD0500 CALL BDOS WRITE MESSAGE
0166 C30000 JMP BOOT REBOOT SYSTEM

■ SYSTEM INTERFACE SUBROUTINES
(ALL RETURN DIRECTLY FROM BDOS)

0169 OEOF OPEN: MVI C.OPENF

80 CP/M Reference Manual

016B C30500 JMP BDOS

016E 0E10 CLOSE: MVI C.CLOSEF
0170 C30500 JMP BDOS

0173 0E13 DELETE: MVI C.DELETEF
0175 C30500 JMP BDOS

0178 0E14 READ: MVI C.READF
017A C30500 JMP BDOS

0170 0E15 WRITE: MVI C.WRITEF
017F C30500 JMP BDOS

0182 0E16 MAKE: MVI C.MAKEF
0184 C30500 JMP BDOS

CONSOLE MESSAGES
0187 6E6F20FNOFILE: DB NO SOURCE FILES
0196 6E6F209NODIR: DB NO DIRECTORY SPACES
01A9 6F7574FSPACE: DB OUT OF DATA SPACES
01BB 7772695WRPROT: DB WRITE PROTECTED^S
01CC 636F700NORMAL: DB COPY COMPLETES

DATA AREAS
01 DA DFCB: DS 33 ; DESTINATION FCB
01 FA zz DFCBCR EQU DFCB + 32 ; CURRENT RECORD

01FB
STACK:

DS 32 ; 16 LEVEL STACK

021 B END

Note that there are several simplifications in this particular
program. First, there are no checks for invalid file names which
could, for example, contain ambiguous references. This situation
could be detected by scanning the 32 byte default area starting at
location 005CH for ASCII question marks. A check should also
be made to ensure that the file names have, in fact, been included
(check locations 005DH and 006DH for non-blank ASCII characters).
Finally, a check should be made to ensure that the source and
destination file names are different. A speed improvement could be
made by buffering more data on each read operation. One could,
for example, determine the size of memory by fetching FBASE
from location 0006H and use the entire remaining portion of
memory for a data buffer. In this case, the programmer simply
resets the DMA address to the next successive 128 byte area
before each read. Upon writing to the destination file, the DMA
address is reset to the beginning of the buffer and incremented
by 128 bytes to the end as each record is transferred to the
destination file.

CP/M 2.0 Interface Guide 81

n

■

Sample File Dump Utility

The file dump program shown below is slightly more complex
than the single copy program given in the previous section. The
dump program reads an input file, specified in the CCP command
line, and displays the content of each record in hexadecimal format
at the console. Note that the dump program saves the CCP’s
stack upon entry, resets the stack to a local area, and restores the
CCP’s stack before returning directly to the CCP. Thus, the dump
program does not perform warm start at the end of processing.

DUMP PROGRAM READS INPUT FILE AND DISPLAYS HEX DATA

0100 ORG 100H
0005 — BDOS EQU 0005H BOS ENTRY POINT
0001 = CONS EQU 1 BEAD CONSOLE
0002 ZZ TYPEF EQU 2 ;TYPE FUNCTION
0009 — PRINTF EQU 9 BUFFER PRINT ENTRY
000 B — BRKF EQU 11 BREAK KEY FUNCTION (TRUE IF CHAR)
000 F — OPENF EQU 15 .FILE OPEN
0014 — READF EQU 20 BEAD FUNCTION

005C — FCB EQU 5CH BILE CONTROL BLOCK ADDRESS
0080 — BUFF EQU 80H .INPUT DISK BUFFER ADDRESS

NON GRAPHIC CHARACTERS
GOOD — CR EQU 0DH CARRIAGE RETURN
000A — LF EQU 0AH BINE FEED

»
FILE CONTROL BLOCK DEFINITIONS

005C — FCBDN EQU FCB + 0 BISK NAME
005 D = FCBFN EQU FCB + 1 BILE NAME
0065 — FCBFT EQU FCB + 9 BISK FILE TYPE (3 CHARACTERS)
0068 — FCBRL EQU FCB+12 BILE'S CURRENT REEL NUMBER
006 B = FCBRC EQU FCB+15 BILE S RECORD COUNT (0 TO 128)
007C = FCBCR EQU FCB + 32 ;CURRENT (NEXT) RECORD NUMBER (0)
007 D — FCBLN EQU FCB + 33 BCB LENGTH

J SET UP STACK
0100 210000 LXI H,0
0103 39 DAD SP

J ENTRY STACK POINTER IN HL FROM THE CCP
0104 221502 SHLD OLDSP

1 SET SP TO LOCAL STACK AREA (RESTORED AT FINIS)
0107 315702 LXI SPSTKTOP

1 READ AND PRINT SUCCESSIVE BUFFERS
01OA CDC101 CALL SETUP BET UP INPUT FILE
010D FEFF CPI 255 ;255 IF FILE NOT PRESENT
010F C21B01 JNZ OPENOK BKIP IF OPEN IS OK

FILE NOT THERE, GIVE ERROR MESSAGE AND RETURN
0112 LLF301 LXI D,OPNMSG
0115 CD9C01 CALL ERR
0118 C35101 JMP FINIS :TO RETURN

OPENOK: ;OPEN OPERATION OK. SET BUFFER INDEX TO END
011B 3E80 MVI A.80H
011D 321302 STA IBP BET BUFFER POINTER TO 80H

■ HL CONTAINS NEXT ADDRESS TO PRINT
0120 210000 LXI H,0 BTART WITH 0000

82 CP/M Reference Manual

GLOOP:
0123 E5 PUSH H ;SAVE LINE POSITION
0124 CDA201 CALL GNB
0127 E1 POP H ;RECALL LINE POSITION
0128 DA5101 JC FINIS ;CARRY SET BY GNB IF END FILE
012B 47

J
!

MOV B.A
PRINT HEX VALUES
CHECK FOR LINE FOLD

012C 7D MOV A.L
012D E60F ANI OFH ;CHECK LOW 4 BITS
012F C24401 JNZ NONUM

PRINT LINE NUMBER
0132 CD7201 CALL CRLF

J
CHECK FOR BREAK KEY

0135 CD5901 CALL BREAK
ACCUM LSB = 1 IF CHARACTER READY

0138 OF RRC ;INTO CARRY
0139 DA5101 JC FINIS ;DON T PRINT ANY MORE

013C 7C
J

MOV A.H
013D CD8F01 CALL PHEX
0140 7D MOV A.L
0141 CD8F01

NONUM:
CALL PHEX

0144 23 INX H ;TO NEXT LINE NUMBER
0145 3E20 MVI A,'
0147 CD6501 CALL PCHAR
014A 78 MOV A.B
014B CD8F01 CALL PHEX
014E C32301

FINIS:

JMP GLOOP

> END OF DUMP, RETURN TO CCP
(NOTE THAT A JMP TO 0000H REBOOTS)

0151 CD7201 CALL CRLF
0154 2A1502 LHLD OLDSP
0157 F9 SPHL

STACK POINTER CONTAINS CCP S STACK LOCATION
0158 C9 RET ;TOTHECCP

J
SUBROUTINES

BREAK: ;CHECK BREAK KEY (ACTUALLY ANY KEY WILL DO)
0159 E5D5C5 PUSH H! PUSH D1 PUSH B; ENVIRONMENT SAVED
015C OEOB MVI C.BRKF
015E CD0500 CALL BDOS
0161 C1D1E1 POP B! POP D! POP H; ENVIRONMENT RESTORED
0164 C9 RET

PCHAR: ;PRINT A CHARACTER
0165 E5D5C5 PUSH HI PUSH D1 PUSH B; SAVED
0168 0E02 MVI C.TYPEF
016A 5F MOV E.A
016B CD0500 CALL BDOS
016E C1D1E1 POP B1 POP D1 POP H; RESTORED
0171 C9

CRLF:

RET

0172 3E0D MVI A.CR
0174 CD6501 CALL PCHAR
0177 3E0A MVI A.LF
0179 CD6501 CALL PCHAR
017C C9 RET

CP/M 2.0 Interface Guide 83

TO DE

PNIB: '.PRINT NIBBLE IN REG A
017D E60F ANI OFH ;LOW4BITS
017F FEOA CPI 10
0181 D28901

J

JNC P10
LESS THAN OR EQUAL TO 9

0184 C630 ADI 0'
0186 C38B01

5

JMP PRN

GREATER OR EQUAL TO 10
0189 C637 P10: ADI A - 10
018B CD6501 PRN: CALL PCHAR
018E C9

PHEX:

RET

;PRINT HEX CHAR IN REG A
018F F5 PUSH PSW
0190 OF RRC
0191 OF RRC
0192 OF RRC
0193 OF RRC
0194 CD7D01 CALL PNIB ;PRINT NIBBLE
0197 F1 POP PSW
0198 CD7D01 CALL PNIB
019B C9

ERR:

RET

;PRINT ERROR MESSAGE
D.E ADDRESSES MESSAGE ENDING WITH

019C 0E09 MVI C.PRINTF ;PRINT BUFFER FUNCTION
019E CD0500 CALL BDOS
01A1 C9

GNB:

RET

:GET NEXT BYTE
01A2 3A1302 LDA IBP
01A5 FE80 CPI 80H
01A7 C2B301

J
JNZ GO
READ ANOTHER BUFFER

01AA CDCE01
»

CALL DISKR
01AD B7 ORA A ;ZERO VALUE IF READ OK
01AE CAB301 JZ GO :FOR ANOTHER BYTE

END OF DATA, RETURN WITH CARRY SET FOR EOF
01B1 37 STC
01B2 C9

GO:

RET

;READ THE BYTE AT BUFF + REG A
01B3 5F MOV E.A ;1S BYTE OF BUFFER INDEX
01 B4 1600 MVI D.O :DOUBLE PRECISION INDEX
01B6 3C INR A ;INDEX = INDEX+1
01B7 321302

J
J

STA IBP :BACK TO MEMORY
POINTER IS INCREMENTED
SAVE THE CURRENT FILE ADDRESS

01 BA 218000 LXI H,BUFF
01BD 19

J
DAD D
ABSOLUTE CHARACTER ADDRESS IS IN H1

01BE 7E
J

MOV A,M
BYTE IS IN THE ACCUMULATOR

01BF B7 ORA A :RESET CARRY BIT
01 CO C9

SETUP:

RET

;SET UP FILE
OPEN THE FILE FOR INPUT

01C1 AF XRA A :ZEROTOACCUM
01C2 327C00 STA FCBCR :CLEAR CURRENT RECORD

01C5 115C00 LXI D.FCB
01C8 OEOF MVI C.OPENF

84 CP/M Reference Manual

01CA CD0500

01CD C9

DISKR:
01CE E5D5C5
01D1 115C00
01D4 0E14
01D6 CD0500
01D9 C1D1E1
01 DC C9

01 DD 46494COSIGNON:
01F3 ODOA4EOOPNMSG:

0213
0215

0217

0257

IBP:
OLDSP:

STKTOP:

CALL BDOS
255 IN ACCUM IF OPEN ERROR
RET

;READ DISK FILE RECORD
PUSH Hi PUSH Di PUSH B
LXI D.FCB
MVI C.READF
CALL BDOS
POP Bi POP D! POP H
RET

FIXED MESSAGE AREA
DB FILE DUMP VERSION 2.0$
DB CR.LF. NO INPUT FILE PRESENT ON DISKS

VARIABLE AREA
DS 2 ;INPUT BUFFER POINTER
DS 2 ;ENTRY SP VALUE FROM CCP

STACK AREA
DS 64 ;RESERVE 32 LEVEL STACK

END

Sample Random Access Program

This manual is concluded with a rather extensive, but complete
example of random access operation. The program listed below
performs the simple function of reading or writing random records
upon command from the terminal. Given that the program has been
created, assembled, and placed into a file labelled RANDOM.COM,
the CCP level command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input. If not found, the file is created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nW nR Q

where n is an integer value in the range 0 to 65535, and W, R,
and Q are simple command characters corresponding to random

RANDOM.COM

CP/M 2.0 Interface Guide 85

write, random read, and quit processing, respectively. If the W
command is issued, the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed
by a carriage return. RANDOM then writes the character string
into the X.DAT file at record n. If the R command is issued,
RANDOM reads record number n and displays the string value at
the console. If the Q command is issued, the X.DAT file is closed,
and the program returns to the console command processor. In
the interest of brevity, the only error message is

error, try again

The program begins with an initialization section where the input
file is opened or created, followed by a continuous loop at the
label “ready” where the individual commands are interpreted. The
default file control block at 005CH and the default buffer at
0080H are used in all disk operations. The utility subroutines then
follow, which contain the principal input line processor, called
“readc.” This particular program shows the elements of random
access processing, and can be used as the basis for further
program development.

I J

• ±

★ ★★★★★★★★★♦★★★★★★★★★★★★■A-****
I

;* SAMPLE RANDOM ACCESS PROGRAM FOR CP/M 2.0
■ ★

★ ★ ★ ★ ★ ★ ir
J

★ ★ ★ ★ ★ ★ ★★★★★★★ ★★★★★★★★★A******************
0100 ORG 100H ; BASE OF TPA

0000 = REBOOT EQU 0000H ; SYSTEM REBOOT
0005 — BDOS EQU 0005 H ; BDOS ENTRY POINT

0001 — CONINP EQU 1 ; CONSOLE INPUT FUNCTION
0002 — CONOUT EQU 2 ; CONSOLE OUTPUT FUNCTION
0009 — PSTRING EQU 9 ; PRINT STRING UNTIL “$'
000A — RSTRING EQU 10 ; READ CONSOLE BUFFER
OOOC — VERSION EQU 12 ; RETURN VERSION NUMBER
000F — OPENF EQU 15 ; FILE OPEN FUNCTION
0010 — CLOSEF EQU 16 ; CLOSE FUNCTION
0016 — MAKEF EQU 22 ; MAKE FILE FUNCTION
0021 — READR EQU 33 ; READ RANDOM
0022 — WRITER EQU 34 ; WRITE RANDOM

005C — FCB EQU 005CH ; DEFAULT FILE CONTROL BLOCK

86 CP/M Reference Manual

007 D = RANREC EQU FCB + 33 ; RANDOM RECORD POSITION
007 F = RANOVF EQU FCB + 35 ; HIGH ORDER (OVERFLOW) BYTE
0080 = BUFF EQU 0080H ; BUFFER ADDRESS

GOOD = CR EQU ODH ; CARRIAGE RETURN
000A = LF EQU OAH ; LINE FEED

•*★★★★★*★★★*★★★★★★★*★***************************

★★★*★★*★★★★★★★*★*♦*****♦**♦******
■ ★
; ★ LOAD SP, SET-UP FILE FOR RANDOM ACCESS

★★★★★★★★★*★★*★★***★★★★★★***********
0100 31BC0 LX I SP, STACK

»
VERSION 2.0?

0103 OEOC MVI C,VERSION
0105 CD050 CALL BDOS
0108 FE20 CPI 20H ; VERSION 2.0 OR BETTER?
010A D2160 JNC VERSOK

BAD VERSION, MESSAGE AND GO BACK
010D 111B0 LXI D,BADVER
0110 CD DAO CALL PRINT
0113 C3000 JMP REBOOT

VERSOK
CORRECT VERSION FOR RANDOM ACCESS

0116 OEOF MVI C.OPENF ; OPEN DEFAULT FCB
0118 115C0 LXI D,FCB
011B CD050 CALL BDOS
011E 3C INR A ; ERR 255 BECOMES ZERO
011 F C2370 JNZ READY

J
CANNOT OPEN FILE, SO CREATE IT

0122 0E16 MVI C.MAKEF
0124 115C0 LXI D,FCB
0127 CD050 CALL BDOS
012A 3C INR A ; ERR 255 BECOMES ZERO
012B C2370 JNZ READY

CANNOT CREATE FILE, DIRECTORY FULL
012E 113A0 LXI D,NOSPACE
0131 CD DAO CALL PRINT
0134 C3000 JMP REBOOT ; BACK TO CCP

; ★ LOOP BACK TO “READY” AFTER EACH COMMAND
■ ★
•★★*★★★★★★*★★★★★★★★******♦**********************

READY:
FILE IS READY FOR PROCESSING

0137 CDE50 CALL READCOM ; READ NEXT COMMAND
013A 227D0 SHLD RANREC ; STORE INPUT RECORD#
013D 217F0 LXI H,RANOVF
0140 3600 MVI M,0 ; CLEAR HIGH BYTE IF SET
0142 FE51 CPI Q' ;QUIT?
0144 C2560 JNZ NOTO

1
QUIT PROCESSING, CLOSE FILE

0147 0E10 MVI C.CLOSEF
0149 115C0 LXI D.FCB
014C CD050 CALL BDOS
014F 3C INR A ; ERR 255 BECOMES 01 I 1
0150 CAB 90 JZ ERROR ; ERROR MESSAGE, RETRY
0153 C3000 JMP REBOOT ; BACK TO CCP

CP/M 2.0 Interface Guide 87

■

R
■

■

■
■

■

;* END OF QUIT COMMAND, PROCESS WRITE

;★★**★★★★*★*★★★★★★★★*★★★★**★★**★*****************
NOTO:

0156
0158

FE57
C2890

; NOT THE QUIT COMMAND, RANDOM WRITE?
CPI W
JNZ NOTW

015B 114D0
; THIS IS A RANDOM WRITE, FILL BUFFER UNTIL CR

LXI D.DATMSG
015E CD DAO CALL PRINT ; DATA PROMPT
0161 0E7F MVI C,127 ; UPTO 127 CHARACTERS
0163 21800 LXI H.BUFF ; DESTINATION

0166 C5
RLOOP: ; READ NEXT CHARACTER TO BUFF

PUSH B ; SAVE COUNTER
0167 E5 PUSH H ; NEXT DESTINATION
0168 CDC20 CALL GETCHR ;CHARACTER TO A
016B E1 POP H ; RESTORE COUNTER
016C C1 POP B ; RESTORE NEXT TO FILL
016D FEOD CPI CR ; END OF LINE?
016F CA780 JZ ERLOOP

0172 77
; NOT END. STORE CHARACTER

MOV M,A
0173 23 INX H ;NEXTTOFILL
0174 OD DCR C ; COUNTER GOES DOWN
0175 C2660 JNZ RLOOP ; END OF BUFFER?

0178 3600

ERLOOP:
; END OF READ LOOP, STORE 00

MVI M,0

017A 0E22
; WRITE THE RECORD TO SELECTED RECORD NUMBER

MVI C,WRITER
017C 115C0 LXI D.FCB
017F CD050 CALL BDOS
0182 B7 ORA A ; ERROR CODE ZERO?
0183 C2B90 JNZ ERROR ; MESSAGE IF NOT
0186 C3370 JMP READY ; FOR ANOTHER RECORD

0189 FE52

■ ★ ★
;* END OF WRITE COMMAND, PROCESS READ
’ ★ ★>

NOTW:
; NOT A WRITE COMMAND, READ RECORD?

CPI R
018B C2B90 JNZ ERROR ; SKIP IF NOT

018E 0E21
; READ RANDOM RECORD

MVI C,READR
0190 115C0 LXI D.FCB
0193 CD050 CALL BDOS
0196 B7 ORA A ; RETURN CODE 00?
0197 C2B90 JNZ ERROR

019A CDCFO
; READ WAS SUCCESSFUL, WRITE TO CONSOLE

CALL CRLF ; NEW LINE
019D 0E80 MVI C.128 ; MAX 128 CHARACTERS
019F 21800 LXI H,BUFF ; NEXT TO GET

01A2 7E
WLOOP:

MOV A,M ; NEXT CHARACTER
01 A3 23 INX H ; NEXT TO GET
01A4 E67F ANI 7FH ; MASK PARITY

88 CP/M Reference Manual

01A6 CA370 JZ READY ; FOR ANOTHER COMMAND IF 00
01A9 C5 PUSH B ; SAVE COUNTER
01AA E5 PUSH H ; SAVE NEXT TO GET
01AB FE20 CPI > » ; GRAPHIC?
01AD D4C80 CNC PUTCHR ; SKIP OUTPUT IF NOT
01 BO E1 POP H
01B1 C1 POP B
01 B2 OD DCR C ;COUNT=COUNT-1
01 B3 C2A20 JNZ WLOOP
01 B6 C3370 JMP READY

•**★★*******★★ ★ ★★★★★★★★★ ★**★*★★★*★*★***★★*★★★****
■ ★ ★
;* END OF READ COMMAND, ALL ERRORS END-UP HERE *
*

J **★♦★*★★♦*★★★★★★***★*★★**

ERROR:
01 B9 11590 LXI D.ERRMSG
01 BC CD DAO CALL PRINT
01BF C3370 JMP READY

01C2 0E01
01C4 CD050
01C7 C9

•★★★★★★★♦★★★★★★★★★★★★**********************
J

; * UTILITY SUBROUTINES FOR CONSOLE I/O

GETCHR:
; READ NEXT CONSOLE CHARACTER TO A
MVI C.CONINP
CALL BDOS
RET

01C8
01CA
01CB
01CE

0E02
5F
CD050
C9

PUTCHR:
; WRITE CHARACTER FROM A TO CONSOLE
MVI
MOV
CALL
RET

C.CONOUT
E.A
BDOS

.CHARACTER TO SEND
; SEND CHARACTER

01CF
01D1
01 D4
01 D6
01 D9

3E0D
CDC80
3E0A
CDC80
C9

CRLF:
; SEND CARRIAGE RETURN LINE FEED
MVI A,CR ; CARRIAGE RETURN
CALL PUTCHR
MVI A,LF ; LINE FEED
CALL PUTCHR
RET

01 DA
01DB
01DE
01DF
01E1
01 E4

D5
CDCFO
D1
0E09
CD050
C9

PRINT:
; PRINT THE BUFFER ADDRESSED BY DE UNTIL $
PUSH D
CALL CRLF
POP D ; NEW LINE
MVI C.PSTRING
CALL BDOS ; PRINT THE STRING
RET

01 E5
01 E8
01EB
01ED
01FO

01F3
01 F6

116B0
CD DAO
OEOA
117A0
CD050

21000
117C0

READCOM
; READ THE NEXT COMMAND LINE TO THE CONBUF
LXI D,PROMPT
CALL PRINT ; COMMAND?
MVI C,RSTRING
LXI D,CONBUF
CALL BDOS .READ COMMAND LINE
COMMAND LINE IS PRESENT, SCAN IT
LXI H,0 ; START WITH 0000
LXI D,CONLIN ; COMMAND LINE

CP/M 2.0 Interface Guide

II
M
■
n

n

n
ii

01 F9 1A READC: LDAX D ; NEXT COMMAND CHARACTER
01 FA 13 INX D ; TO NEXT COMMAND POSITION
01FB B7 ORA A ; CANNOT BE END OF COMMAND
01 FC C8 RZ

» NOT ZERO, NUMERIC?
01FD D630 SUI O'
01FF FEOA CPI 10 ; CARRY IF NUMERIC
0201 D2130 JNC ENDRD

J ADD-IN NEXT DIGIT
0204 29 DAD H ;*2
0205 4D MOV C,1
0206 44 MOV B.H ; BC = VALUE * 2
0207 29 DAD H ;*4
0208 29 DAD H ;*8
0209 09 DAD B ; *2 + *8 = *10
020A 85 ADD 1 ; +DIGIT
020B 6F MOV 1.A
020C D2F90 JNC READC ;FOR ANOTHER CHAR
020F 24 INR H ;OVERFLOW
0210 C3F90 JMP READC ; FOR ANOTHER CHAR

ENDRD:
> END OF READ, RESTORE VALUE IN A

0213 C630 ADI O' ; COMMAND
0215 FE61 CPI A ;TRANSLATE CASE?
0217 D8 RC

J LOWER CASE, MASK LOWER CASE BITS
0218 E65F ANI 101$1111B
021A C9 RET

; * STRING DATA AREA FOR CONSOLE MESSAGE

★★★★★★★★★★★★*★★★★★*★★★★*★★★★*★******************
BADVER;

021 B 536F79
NOSPACE:

DB SORRY, YOU NEED CP/M VERSION 2$'

023A 4E6F29
DATMSG:

DB NO DIRECTORY SPACES

024D 547970
ERRMSG:

DB TYPE DATA: S'

0259 457272
PROMPT:

DB ERROR, TRY AGAIN.S'

026B 4E6570 DB NEXT COMMAND? S'

■★★★*★***★*★★★★*★★★★****★★★********************** 1

;★ FIXED AND VARIABLE DATA AREA

★★★★★★★★★★★★★★★★★★★★A************************
027A 21 CONBUF: DB CONLEN ; LENGTH OF CONSOLE BUFFER
027B CONSIZE: DS 1 ; RESULTING SIZE AFTER READ
027C CONLIN: DS 32 ; LENGTH 32 BUFFER
0021 = CONLEN EQU S-CONSIZ

029C
STACK:

DS 32 ; 16 LEVEL STACK

02BC END

90 CP/M Reference Manual

Again, major improvements could be made to this particular
program to enhance its operation. In fact, with some work, this
program could evolve into a simple data base management
system. One could, for example, assume a standard record size of
128 bytes, consisting of arbitrary fields within the record. A
program, called GETKEY, could be developed which first reads a
sequential file and extracts a specific field defined by the operator.
For example, the command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and
extract the “LASTNAME” field from each record, starting at
position 10 and ending at character 20. GETKEY builds a table in
memory consisting of each particular LASTNAME field, along
with its 16-bit record number location within the file. The GETKEY
program then sorts this list, and writes a new file, called
LASTNAME.KEY, which is an alphabetical list of LASTNAME
fields with their corresponding record numbers. (This list is called
an “inverted index” in information retrieval parlance.)

Rename the program shown above as QUERY, and massage it a
bit so that it reads a sorted key file into memory. The command line
might appear as:

QUERY NAMES.DAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an
alphanumeric string which is a particular key to find in the
NAMES.DAT data base. Since the LASTNAME.KEY list is sorted,
you can find a particular entry quite rapidly by performing a
“binary search,” similar to looking up a name in the telephone
book. That is, starting at both ends of the list, you examine the
entry halfway in between and, if not matched, split either the upper
half or the lower half for the next search. You’ll quickly reach the
item you’re looking for (in Iog2(n) steps) where you’ll find the
corresponding record number. Fetch and display this record at
the console, just as we have done in the program shown above.

At this point you’re just getting started. With a little more work, you
can allow a fixed grouping size which differs from the 128 byte

CP/M 2.0 Interface Guide 91

record shown above. This is accomplished by keeping track of the
record number as well as the byte offset within the record.
Knowing the group size, you randomly access the record containing
the proper group, offset to the beginning of the group within the
record read sequentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy
several relationships, such as a LASTNAME between HARDY and
LAUREL, and an AGE less than 45. Display all the records which
fit this description. Finally, if your lists are getting too big to fit into
memory, randomly access your key files from the disk as well.
One note of consolation after all this work: if you make it through
the project, you’ll have no more need for this manual!

92 CP/M Reference Manual

System Function Summary

Func Function Name
Input
Parameters

Output
Results

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

System Reset
Console Input
Console Output
Reader Input
Punch Output
List Output
Direct Console I/O
Get I/O Byte
Set I/O Byte
Print String
Read Console Buffer
Get Console Status
Return Version Number
Reset Disk System
Select Disk
Open File
Close File
Search for First
Search for Next
Delete File
Read Sequential
Write Sequential
Make File
Rename File
Return Login Vector
Return Current Disk
Set DMA Address
Get Addr(Alloc)
Write Protect Disk
Get R/O Vector
Set File Attributes
Get Addr (disk parms)
Set/Get User Code
Read Random
Write Random
Compute File Size
Set Random Record

none
none
E=char
none
E=char
E=char
see def
none
E-IOBYTE
DE-.Buffer
DE-.Buffer
none
none
none
E=Disk Number
DE-.FCB
DE-.FCB
DE-.FCB
none
DE-.FCB
DE-.FCB
DE-.FCB
DE-.FCB
DE-.FCB
none
none
DE-.DMA
none
none
none
DE-.FCB
none
see def
DE-.FCB
DE-.FCB
DE-.FCB
DE-.FCB

none
A=char
none
A=char
none
none
see def
A-IOBYTE
none
none
see def
A-OO/FF
HL-Version*
see def
see def
A-Dir Code
A=Dir Code
A=Dir Code
A-Dir Code
A-Dir Code
A=Err Code
A=Err Code
A=Dir Code
A-Dir Code
HL-Log in Vect*
A=Cur Disk#
none
HL-.Alloc
see def
HL-R/O Vect*
see def
HL-.DPB
see def
A=Err Code
A=Err Code
rO, r1, r2
rO, r1, r2

*Note the A=L, and B = H upon return

CP/M Editor 93

■f-

f4
i:

t

Introduction to ED94
ED Operation
Text Transfer Functions
Memory Buffer Organization
Memory Buffer Operation100

4 JLCommand Strings
Text Search and Alteration103
Source Libraries f

Repetitive Command Execution107
ED Error Conditions ■4 f

Summary of Control Characters109
Summary of ED Commands
ED Text Editing Commands

A

4<>»4‘

tV/'.-ViV.VjV/'MV.-'. K-WZZ^WZZ-WZzZ-zZ-Z-X-Z-ZZ-JZ-

ZZZ.-ZZZZWZZZZZ-ZZZZZZZZ

5|

-4

CP/M Editor

II

>zzz-x<Zz>ZzZzzzzzZzzz::-x-z-:-:-z-:->i;

94 CP/M Reference Manual

3
CP/Nl Editor

Introduction to ED

ED is the context editor for CP/M, and is used to create and alter
CP/M source files. ED is initiated in CP/M by typing

!
<filename>

<filename> ■ <filetype>

In general, ED reads segments of the source file given by
<filename> or <filename> • <filetype> into central memory, where
the file is manipulated by the operator, and subsequently written
back to disk after alterations. If the source file does not exist before
editing, it is created by ED and initialized to empty. The overall
operation of ED is shown in Figure 1.

CP/M Editor 95

ED Operation

Text Transfer Functions

The memory buffer is logically between the source file and working
file as shown in Figure 2.

ED operates upon the source file, denoted in Figure 1 by x.y,
and passes all text through a memory buffer where the text can be
viewed or altered (the number of lines which can be maintained
in the memory buffer varies with the line length, but has a total
capacity of about 6000 characters in a 16K CP/M system). Text
material which has been edited is written onto a temporary work
file under command of the operator. Upon termination of the
edit, the memory buffer is written to the temporary file, followed by
any remaining (unread) text in the source file. The name of the
original file is changed from x.y to x.BAK so that the most recent
previously edited source file can be reclaimed if necessary (see
the CP/M commands ERASE and RENAME). The temporary file is
changed from x.$$$ to x.y which becomes the resulting edited
file.

Given that n is an integer value in the range 0 through 65535, the
following ED commands transfer lines of text from the source file
through the memory buffer to the temporary (and eventually final)
file:

96 CP/M Reference Manual

Figure 1. Overall ED Operation

CP/M Editor 97

Note

The ED program accepts both lower and upper case
ASCII characters as input from the console. Single letter
commands can be typed in either case. The U command
can be issued to cause ED to translate lower case
alphabetics to upper case as characters are filled to
the memory buffer from the console. Characters are echoed
as typed without translation, however. The —U command
causes ED to revert to “no translation” mode. ED starts
with an assumed — U in effect.

Source File Memory Buffer Temporary File

Figure 2. Memory Buffer Organization

98 CP/M Reference Manual

Figure 3. Logical Organization of Memory Buffer

nA<cr>*

nW<cr>

E<cr>

H<cr>

Append the next n unprocessed source
lines from the source file at SP to the end of
the memory buffer at MP. Increment SP and
MP by n.

Write the first n lines of the memory buffer
to the temporary file free space. Shift the
remaining lines n + 1 through MP to the top
of the memory buffer. Increment TP by n.
End the edit. Copy all buffered text to
temporary file, and copy all unprocessed
source lines to the temporary file. Rename
files as described previously.

Move to head of new file by performing
automatic E command. Temporary file
becomes the new source file, the memory
buffer is emptied, and a new temporary file
is created (equivalent to issuing an E
command, followed by a reinvocation of ED
using x.y as the file to edit).

*<cr> represents the carriage-return key

CP/M Editor 99

n
■
■
H
■

■
■
n
■
■

n
ii
■

■
■

ii
n

0<cr> Return to original file. The memory buffer
is emptied, the temporary file is deleted,
and the SP is returned to position 1 of the
source file. The effects of the previous
editing commands are thus nullified.

Q<cr> Quit edit with no file alterations, return
to CP/M.

There are a number of special cases to consider. If the integer n is
omitted in any ED command where an integer is allowed, then 1
is assumed. Thus, the commands A and W append one line and
write 1 line, respectively. In addition, if a pound sign (#) is given
in the place of n, then the integer 65535 is assumed (the largest
value for n which is allowed). Since most reasonably sized
source files can be contained entirely in the memory buffer, the
command #A is often issued at the beginning of the edit to read
the entire source file to memory. Similarly, the command #W writes
the entire buffer to the temporary file. Two special forms of the A
and W commands are provided as a convenience. The command
OA fills the current memory buffer to at least half-full, while OW
writes lines until the buffer is at least half empty. It should also be
noted that an error is issued if the memory buffer size is exceeded.
The operator may then enter any command (such as W) which does
not increase memory requirements. The remainder of any partial
line read during the overflow will be brought into memory on the
next successful append.

Memory Buffer Organization

The memory buffer can be considered a sequence of source lines
brought in with the A command from a source file. The memory
buffer has an associated (imaginary) character pointer (CP) which
moves throughout the memory buffer under command of the
operator. The memory buffer appears logically as shown in Figure 3
where the dashes represent characters of the source line of
indefinite length, terminated by carriage return (<cr>) and line feed
(<1f>) characters, and ± represents the imaginary character
pointer. Note that the CP is always located ahead of the first
character of the first line, behind the last character of the last

100 CP/M Reference Manual

line, or between two characters. The current line CL is the source
line which contains the CP.

Memory Buffer Operation

Upon initiation of ED, the memory buffer is empty (i.e., CP is both
ahead and behind the first and last character). The operator may
either append lines (A command) from the source file, or enter the
lines directly from the console with the insert command

ED then accepts any number of input lines, where each line
terminates with a <cr> (the <lf> is supplied automatically), until a
control-z (denoted by fz) is typed by the operator. The CP is
positioned after the last character entered. The sequence

Kcr>
NOW ISTHE<cr>
TIME FOR<cr>
ALLGOOD MEN<cr>
Tz

leaves the memory buffer as shown below

NOW ISTHE<crxlf>
TIME F0R<crXlf>
ALL GOOD MEN<cr> <lf>A>

Various commands can then be issued which manipulate the CP or
display source text in the vicinity of the CP. The commands
shown below with a preceding n indicate that an optional unsigned
value can be specified. When preceded by ±, the command can
be unsigned, or have an optional preceding plus or minus sign. As
before, the pound sign (#) is replaced by 65535. If an integer n is
optional, but not supplied, then n=1 is assumed. Finally, if a plus
sign is optional, but none is specified, then + is assumed.

CP/M Editor 101

± B <cr> move CP to beginning of memory buffer if
+, and to bottom if -.

±nC<cr> move CP by ±n characters (toward front of
buffer if +), counting the <cr > <lf> as two
distinct characters.

±nD<cr> delete n characters ahead of CP if plus and
behind CP if minus.

±nK<cr> kill (i.e., remove) ±n lines of source text
using CP as the current reference. If CP is
not at the beginning of the current line when
K is issued, then the characters before
CP remain if + is specified, while the
characters after CP remain if - is given in
the command.

±nL<cr> if n = 0, move CP to the beginning of
the current line (if it is not already there).
If n^O, first move the CP to the beginning
of the current line, and then move it to the
beginning of the line which is n lines down
(if +) or up (if -). The CP will stop at the
top or bottom of the memory buffer if too
large a value is specified.

±nT<cr> If n = 0 then type the contents of the
current line up to CP. If n = 1 then type the
contents of the current line from CP to the
end of the line. If n>1 then type the
current line along with n-1 lines which
follow, if + is specified. Similarly, if n>1 and
- is given, type the previous n lines, up to
the CP. The Break key can be depressed to
abort long type-outs.

± n<cr> equivalent to ±nLT, which moves up or down
and types a single line.

102 CP/M Reference Manual

Command Strings

Any number of commands can be typed contiguously (up to the
capacity of the CP/M console buffer), and are executed only
after the <cr> is typed. Thus, the operator may use the CP/M
console command functions to manipulate the input command.

Rubout
Control-X
Control-C
Control-E

remove the last character
delete the entire line
re-initialize the CP/M System
return carriage for long lines without trans­
mitting buffer (max 128 chars)

Suppose the memory buffer contains the characters shown in the
previous section, with the CP following the last character of the
buffer. The command strings shown below produce the results
shown to the right.

Command
String Effect Resulting Memory Buffer
B2T<cr> move to beginning of

buffer and type 2 lines:
“NOW IS THE
TIME FOR”

a NOW ISTHE<cr><lf>'-'P

TIME FOR<crxlf>
ALL GOOD MEN<cr> <lf>

5C0T<cr> move CP 5 characters
and type the beginning
of the line “NOW I”

NOW I AS THE<crxlf>
^P

2L-T<cr> move two lines down
and type previous line
“TIME FOR”

NOW ISTHE<crxlf>
TIME F0R<crxlf>

a ALL GOOD MEN<crxlf>^P

~L#K<cr> move up one line,
delete 65535 lines
which follow

NOW ISTHE<crx|f>A
UP

CP/M Editor 103

Command
String Effect

TIME TO<cr>
INSERT<cr>

insert two lines
of text

-2L#T<cr>

<cr>

move up two lines, and
type 65535 lines ahead
of CP “NOW IS THE”

move down one line
and type one line
“INSERT”

Resulting Memory Buffer
NOW ISTHE<cr><lf>
TIME TO<crxlf>
INSERT<cr><lf>*

NOW ISTHE<crXlf>A
TIME TO<crxlf>
INSERT<cr><lf>

NOW IS THE<crxlf>
TIME TO<cr><lf>A
INSERT<cr> <lf>

Text Search and Alteration

ED also has a command which locates strings within the memory
buffer. The command takes the form

nF c,c2... ck

where c-, through ck represent the characters to match
followed by either a <cr> or control-z.* ED starts at the current
position of CP and attempts to match all k characters. The match
is attempted n times, and if successful, the CP is moved directly
after the character ck. If the n matches are not successful, the
CP is not moved from its initial position. Search strings can include
•fl (control-l), which is replaced by the pair of symbols <cr> <lf>.

*The control-z is used if additional commands will be typed following the Tz.

104 CP/M Reference Manual

The following commands illustrate the use of the F command:

Command
String Effect Resulting Memory Buffer
B#T<cr> move to beginning

and type entire
buffer

FS T<cr> find the end of
the string “S T”

FITzOTT find the next “I” and
type to the CP then
type the remainder of
the current line:
“TIME FOR”

a NOW ISTHE<crxlf>
'-'P

TIME FOR<crxlf>
ALL GOOD MEN<cr> <lf>

NOW IS TaHE<cr><lf>^P

NOW ISTHE<crxlf>
TIAME FOR<crxlf>

'-'P

ALL GOOD MEN<cr> <lf>

An abbreviated form of the insert command is also allowed,
which is often used in conjunction with the F command to make
simple textural changes. The form is:

I CtC2... cnTz or
I CiC2... cn<cr>

where c, through cn are characters to insert. If the insertion
string is terminated by a Tz, the characters Ct through
cn are inserted directly following the CP, and the CP is moved
directly after character cn. The action is the same if the command
is followed by a <cr> except that a <cr> <lf> is automatically
inserted into the text following character cn. Consider the following
command sequences as examples of the F and I commands:

CP/M Editor 105

Command
String Effect Resulting Memory Buffer
BITHIS IS Tz<cr>

Insert “THIS IS” THISIS±NOWTHE<cr><lf> '-'P

at the beginning TIME FOR<cr><lf>
of the text ALL GOOD MEN<cr><lf>

FTIMETz—4DIPLACETz<cr> THIS IS NOWTHE<cr><lf>
find “TIME” and delete PLACE<FOR<cr><lf>
it; then insert “PLACE” ALL GOOD MEN<cr> <lf>

3FOTz—3D5DICHANGEST<cr> THIS IS NOWTHE<cr><lf>
find third occurrence of PLACE FOR<cr> <lf>
“O” (i.e., the second “O” ALL CHANGES±p<crxlf>
in GOOD), delete pre­
vious 3 characters; then
insert “CHANGES”

-8CISOURCE<cr>
move back 8 characters THIS IS NOWTHE<cr><lf>
and insert the line PLACE F0R<crxlf>
“SOURCE<cr> <lf>” ALL SOURCE<cr> <lf>

±CHANGES<crXlf>
'-'P

ED also provides a single command which combines the F and I
commands to perform simple string substitutions. The command
takes the form

n S c^c2... CkTzd^ ... dm

and has exactly the same effect as applying the command string

F c^c2... ckTz—kDId^j... dm

a total of n times. That is, ED searches the memory buffer starting
at the current position of CP and successively substitutes the
second string for the first string until the end of buffer, or until
the substitution has been performed n times.

106 CP/M Reference Manual

As a convenience, a command similar to F is provided by ED which
automatically appends and writes lines as the search proceeds.
The form is

n N c,c2 ... ck

which searches the entire source file for the nth occurrence of the
string c^ ... ck (recall that F fails if the string cannot be found in
the current buffer). The operation of the N command is precisely
the same as F except in the case that the string cannot be found
within the current memory buffer. In this case, the entire memory
contents is written (i.e., an automatic #W is issued). Input lines are
then read until the buffer is at least half full, or the entire source
file is exhausted. The search continues in this manner until the
string has been found n times, or until the source file has been
completely transferred to the temporary file.

A final line editing function, called the juxtaposition command takes
the form

n J c^s... ckTz d,d2... dmTz e^e2... eq

with the following action applied n times to the memory buffer:
search from the current CP for the next occurrence of the string
CiC2... ck. If found, insert the string d,,d2... dm, and move CP to
follow dm. Then delete all characters following CP up to (but not
including) the string e1,e2,... eq, leaving CP directly after dm. If
e,,e?,... en cannot be found, then no deletion is made. If the
current line is

a NOW IS THE TIME<cr><lf>'-'P

Then the command

JW TzWHATTzT1<cr>

results in

NOW WHAT *<crx|f>
'-'P

CP/M Editor 107

(Recall that Tl represents the pair <cr> <lf> in search and
substitution strings.)

It should be noted that the number of characters allowed by
ED in the F,S,N, and J commands is limited to 100 symbols.

Source Libraries

ED also allows the inclusion of source libraries during the editing
process with the R command. The form of this command is

R fj2.. fnTz or
R f1f2.. fn<cr>

where f,f2.. fn is the name of a source file on the disk with an
assumed filetype of LIETED reads the specified file, and places
the characters into the memory buffer after CP, in a manner
similar to the I command. Thus, if the command

RMACRO<cr>

is issued by the operator, ED reads from the file MACRO.LIB
until the end-of-file, and automatically inserts the characters into
the memory buffer.

Repetitive Command Execution

The macro command M allows the ED user to group ED commands
together for repeated evaluation. The M command takes the form:

n M c}c2... ck

where c1c2... ck represent a string of ED commands, not including
another M command. ED executes the command string n times
if n>1. If n=0 or 1, the command string is executed repetitively until
an error condition is encountered (e.g., the end of the memory
buffer is reached with an F command).

108 CP/M Reference Manual

As an example, the following macro changes all occurrences of
GAMMA to DELTA within the current buffer, and types each line
which is changed:

MFGAMMATz—5DIDELTATzOTT<cr>

or equivalently

MSGAMMATzDELTATzOTT<cr>

ED Error Conditions

On error conditions, ED prints the last character read before the
error, along with an error indicator:

? unrecognized command

> memory buffer full (use one of the
commands D, K, N, S, or W to remove
characters), F, N, or S strings too long.

cannot apply command the number of times
specified (e.g., in F command)

O cannot open LIB file in R command

Cyclic redundancy check (CRC) information is written with each
output record under CP/M in order to detect errors on subsequent
read operations. If a CRC error is detected, CP/M will type

PERM ERR DISKd

where d is the currently selected drive (A, B,...). The operator
can choose to ignore the error by typing any character at the
console (in this case, the memory buffer data should be examined
to see if it was incorrectly read), or the user can reset the
system and reclaim the backup file, if it exists. The file can
be reclaimed by first typing the contents of the BAK file to
ensure that it contains the proper information.

TYPE x.BAK<cr>

where x is the file being edited. Then remove the primary file:

ERA x.y<cr>

and rename the BAK file:

REN x.y=x.BAK<cr>

The file can then be re-edited, starting with the previous system.

Summary of Control Characters

The following table summarizes the Control characters and
commands available in ED:

Control Character Function
Tc system reboot

Te physical <cr><lf>(not actually
entered in command)

Ti logical tab (cols 1,8, 15,...)

Tl logical <cr> <lf> in search
and substitute strings

Tx line delete

Tz string terminator

rubout character delete

break discontinue command
(e.g., stop typing)

110 CP/M Reference Manual

Summary of ED Commands

Command Function
nA append lines
±B begin bottom of buffer

±nC move character positions
±nD delete characters
E end edit and close files

(normal end)
nF find string
H

I
end edit, close and reopen files
insert characters

nJ place strings in juxtaposition
±nK kill lines

±nL move down/up lines
nM macro definition
nN find next occurrence with

autoscan

0 return to original file
±nP move and print pages
Q quit with no file changes
R read library file

nS substitute strings
±nT type lines

-U translate lower to upper case
if U, no translation if -U

nW write lines
nZ sleep
±n<cr> move and type (±nLT)

CP/M Editor 111

ED Text Editing Commands

The ED context editor contains a number of commands which
enhance its usefulness in text editing. The improvements are found
in the addition of line numbers, free space interrogation, and
improved error reporting.

The context editor issued with CP/M produces absolute line number
prefixes when the “V” (Verify Line Numbers) command is issued.
Following the V command, the line number is displayed ahead of
each line in the format:

nnnnn:

where nnnnn is an absolute line number in the range 1 to 65535.
If the memory buffer is empty, or if the current line is at the end
of the memory buffer, then nnnnn appears as 5 blanks.

The user may reference an absolute line number by preceding any
command by a number followed by a colon, in the same format
as the line number display. In this case, the ED program moves
the current line reference to the absolute line number, if the
line exists in the current memory buffer. Thus the command

345 :T

is interpreted as “move to absolute line 345, and type the line.”
Note that absolute line numbers are produced only during the
editing process, and are not recorded with the file. In particular,
the line numbers will change following a deleted or expanded
section of text.

The user may also reference an absolute line number as a
backward or forward distance from the current line by preceding
the absolute line number by a colon. Thus, the command

:400T

is interpreted as “type from the current line number through the

112 CP/M Reference Manual

line whose absolute number is 400.” Combining the two line
reference forms, the command

345::400T

for example, is interpreted as “move to absolute line 345, then
type through absolute line 400.” Note that absolute line
references of this sort can precede any of the standard ED
commands.

A special case of the V command, “OV,” prints the memory
buffer statistics in the form:

free/total

where “free” is the number of free bytes in the memory buffer
(in decimal), and “total” is the size of the memory buffer.

ED also includes a “block move” facility implemented through
the “X” (Xfer) command. The form

nX

transfers the next n lines from the current line to a temporary
file called

X$$$$$$$.LIB

which is active only during the editing process. In general,
the user can reposition the current line reference to any portion
of the source file and transfer lines to the temporary file. The
transferred lines accumulate one after another in this file, and can
be retrieved by simply typing:

R

which is the trivial case of the library read command. In this
case, the entire transferred set of lines is read into the memory
buffer. Note that the X command does not remove the transferred
lines from the memory buffer, although a K command can be used
directly after the X, and the R command does not empty the
transferred line file. That is, given that a set of lines has been

CP/M Editor 113

transferred with the X command, they can be re-read any number
of times back into the source file. The command

OX

is provided, however, to empty the transferred line file.

Note that upon normal completion of the ED program through
Q or E, the temporary LIB file is removed. If ED is aborted through
Control-C, the LIB file will exist if lines have been transferred,
but will generally be empty (a subsequent ED invocation will erase
the temporary file).

Due to common typographical errors, ED requires several
potentially disastrous commands to be typed as single letters,
rather than in composite commands. The commands

E (end), H (head), O (original), Q (quit)

must be typed as single letter commands.

ED also prints error messages in the form

BREAK “x” AT c

where x is the error character, and c is the command where the
error occurred.

114 CP/M Reference Manual

CP/M Assembler 115

CP/M Assembler

116 Introduction
118 Program Format
120 Forming the Operand
120 Labels
121 Numeric Constants
122 Reserved Words
123 String Constants
123 Arithmetic and Logical Operators
125 Precedence of Operators
126 Assembler Directives
126 The ORG Directive
127 The END Directive
127 The EQU Directive
128 The SET Directive
129 The IF and ENDIF Directives
131 The DB Directive
131 The DW Directive
132 The DS Directive
132 Operation Codes
133 Jumps, Calls and Returns
134 Immediate Operand Instructions
135 Increment and Decrement Instructions
136 Data Movement Instructions
137 Arithmetic Logic UnitOperations
138 Control Instructions
139 Error Messages
140 A Sample Session

116 CP/M Reference Manual

4
CP/M Assembler

Introduction

The CP/M assembler reads assembly language source files from
the diskette, and produces 8080 machine language in Intel hex
format. The CP/M assembler is initiated by typing

ASM filename
or

ASM filename.parms

In both cases, the assembler assumes there is a file on the diskette
with the name

filename.ASM

which contains an 8080 assembly language source file. The first
and second forms shown above differ only in that the second form
allows parameters to be passed to the assembler to control
source file access and hex and print file destinations.

In either case, the CP/M assembler loads, and prints the message

CP/M ASSEMBLER VER n.n

where n.n is the current version number. In the case of the first

CP/M Assembler 117

command, the assembler reads the source file with assumed file
type “ASM” and creates two output files.

filename.HEX
and

filename.PRN

The “HEX” file contains the machine code corresponding to the
original program in Intel hex format, and the “PRN” file contains
an annotated listing showing generated machine code, error flags,
and source lines. If errors occur during translation, they will be
listed in the PRN file as well as at the console.

The second command form can be used to redirect input and
output files from their defaults. In this case, the “parms” portion
of the command is a three letter group which specifies the origin of
the source file, the destination of the hex file, and the destination
of the print file. The form is

filename.p1p2p3

where p1, p2, and p3 are single letters

p1: A,B,..., Y

p2: A,B,..., Y

Z

p3: A,B, ..., Y

X
Z

Thus, the command

ASM X.AAA

designates the disk name which contains
the source file
designates the disk name which will
receive the hex file
skips the generation of the hex file

designates the disk name which will
receive the print file
places the listing at the console
skips generation of the print file

indicates that the source file (X.ASM) is to be taken from disk A,
and that the hex (X.HEX) and the print (X.PRN) files are to be
created also on disk A. This form of the command is implied if
the assembler is run from disk A. That is, given that the operator is

118 CP/M Reference Manual

currently addressing disk A, the above command is equivalent to

ASM X

The command

ASM X.ABX

indicates that the source file is to be taken from disk A, the hex
file is placed on disk B, and the listing file is to be sent to the
console. The command

ASM X.BZZ

takes the source file from disk B, and skips the generation of the
hex and print files. (This command is useful for fast execution of
the assembler to check program syntax.)

The source program format is compatible with both the Intel
8080 assembler (macros are not currently implemented in the
CP/M assembler, however) as well as the Processor Technology
Software Package #1 assembler. That is, the CP/M assembler
accepts source programs written in either format. There are
certain extensions in the CP/M assembler which make it somewhat
easier to use. These extensions are described below.

Program Format

An assembly language program acceptable as input to the
assembler consists of a sequence of statements of the form

line # label operation operand ;comment

where any or all of the fields may be present in a particular
instance. Each assembly language statement is terminated with
a carriage return and line feed (the line feed is inserted automatically
by the ED program), o with the character"!” which is treated as
an end-of-line by the assembler (thus, multiple assembly language
statements can be written on the same physical line if separated
by exclamation symbols).

CP/M Assembler 119

The line# is an optional decimal integer value representing the
source program line number, which is allowed on any source line
to maintain compatibility with the Processor Technology format. In
general, these line numbers will be inserted if a line-oriented
editor is used to construct the original program, and thus ASM
ignores this field if present.

The label field takes the form

identifier
or

identifier:

and is optional, except where noted in particular statement
types. The identifier is a sequence of alphanumeric characters
(alphabetics and numbers), where the first character is alphabetic.
Identifiers can be freely used by the programmer to label elements
such as program steps and assembler directives, but cannot
exceed 16 characters in length. All characters are significant in an
identifier, except for the embedded dollar symbol ($) which can
be used to improve readability of the name. Further, all lower case
alphabetics are treated as if they were upper case. Note that the

following the identifier in a label is optional. Thus, the
following are all valid instances of labels

x :
X 1 Y 2

long$name
longer$named$data:
x234$5678$9012$3456:

The operation field contains either an assembler directive, or
pseudo operation, or an 8080 machine operation code. The
pseudo operations and machine operation codes are described
below.

The operand field of the statement, in general, contains an
expression formed out of constants and labels, along with arithmetic
and logical operations on these elements. Again, the complete
details of properly formed expressions are given below.

The comment field contains arbitrary characters following the
symbol until the next real or logical end-of-line. These characters
are read, listed, and otherwise ignored by the assembler. In order

120 CP/M Reference Manual

to maintain compatibility with the Processor Technology assembler,
the CP/M assembler also treats statements which begin with a

in column one as comment statements, which are listed and
ignored in the assembly process. Note that the Processor
Technology assembler has the side effect in its operation of ignoring
the characters after the operand field has been scanned. This
causes an ambiguous situation when attempting to be compatible
with Intel’s language, since arbitrary expressions are allowed in
this case. Hence, programs which use this side effect to introduce
comments, must be edited to place a before these fields in
order to assemble correctly.

The assembly language program is formulated as a sequence of
statements of the above form, terminated optionally by an END
statement. All statements following the END are ignored by the
assembler.

Forming the Operand

In order to completely describe the operation codes and pseudo
operations, it is necessary to first present the form of the operand
field, since it is used in nearly all statements. Expressions in the
operand field consist of simple operands (labels, constants, and
reserved words), combined in properly formed subexpressions
by arithmetic and logical operators. The expression computation is
carried out by the assembler as the assembly proceeds. Each
expression must produce a 16-bit value during the assembly.
Further, the number of significant digits in the result must not
exceed the intended use. That is, if an expression is to be used in a
byte move immediate instruction, then the most significant 8 bits
of the expression must be zero. The restrictions on the expression
significance are given with the individual instructions.

Labels
As discussed above, a label is an identifier which occurs on a
particular statement. In general, the label is given a value determined
by the type of statement which it precedes. If the label occurs on a
statement which generates machine code or reserves memory
space (e.g., a MOV instruction, or a DS pseudo operation), then the

CP/M Assembler 121

label is given the value of the program address which it labels. If
the label precedes an EQU or SET, then the label is given the value
which results from evaluating the operand field. Except for the
SET statement, an identifier can label only one statement.

When a label appears in the operand field, its value is substituted
by the assembler. This value can then be combined with other
operands and operators to form the operand field for a particular
instruction.

Numeric Constants
A numeric constant is a 16-bit value in one of several bases. The
base, called the radix of the constant, is denoted by a trailing radix
indicator. The radix indicators are

B binary constant (base 2)
O octal constant (base 8)
Q octal constant (base 8)
D decimal constant (base 10)
H hexadecimal constant (base 16)

Q is an alternate radix indicator for octal numbers since the letter O
is easily confused with the digit 0. Any numeric constant which
does not terminate with a radix indicator is assumed to be a
decimal constant.

A constant is thus composed as a sequence of digits, followed by
an optional radix indicator, where the digits are in the appropriate
range for the radix. That is binary constants must be composed
of 0 and 1 digits, octal constants can contain digits in the range
0—7, while decimal constants contain decimal digits. Hexadecimal
constants contain decimal digits as well as hexadecimal digits A
(10D), B (11D), C(12D), D (13D), E(14D),and F (15D). Note that
the leading digit of a hexadecimal constant must be a decimal digit
in order to avoid confusing a hexadecimal constant with an
identifier (a leading 0 will always suffice). A constant composed in
this manner must evaluate to a binary number which can be
contained within a 16-bit counter, otherwise it is truncated on the
right by the assembler. Similar to identifiers, imbedded “$” are
allowed within constants to improve their readability. Finally, the
radix indicator is translated to upper case if a lower case letter is

122 CP/M Reference Manual

encountered. The following are all valid instances of numeric
constants

1234 1234D 1100B 1111$0000$1111$0000B
1234H OFFEH 33770 33$77$22O
33770 0fe3h 1234d Offffh

Reserved Words
There are several reserved character sequences which have
predefined meanings in the operand field of a statement. The
names of 8080 registers are given below, which, when encountered,
produce the value shown to the right.

A 7
B 0
C 1
D 2
E 3
H 4
L 5
M 6
SP 6
PSW 6

(Again, lower case names have the same values as their upper case
equivalents.) Machine instructions can also be used in the
operand field, and evaluate to their internal codes. In the case of
instructions which require operands, where the specific operand
becomes a part of the binary bit pattern of the instruction (e.g.,
MOV A,B), the value of the instruction (in this case MOV) is the
bit pattern of the instruction with zeroes in the optional fields (e.g.,
MOV produces 40H).

When the symbol “$” occurs in the operand field (not imbedded
within identifiers and numeric constants) its value becomes the
address of the text instruction to generate, not including the
instruction contained within the current logical line.

M

CP/M Assembler 123

String Constants
String constants represent sequences of ASCII characters, and are
represented by enclosing the characters within apostrophe
symbols (’). All strings must be fully contained within the current
physical line (thus allowing “I” symbols within strings), and must
not exceed 64 characters in length. The apostrophe character itself
can be included within a string by representing it as a double
apostrophe (the keystrokes”), which becomes a single apostrophe
when read by the assembler. In most cases, the string length is
restricted to either one or two characters (the DB pseudo operation
is an exception), in which case the string becomes an 8 or 16 bit
value, respectively. Two character strings become a 16-bit constant,
with the second character as the low order byte, and the first
character as the high order byte.

The value of a character is its corresponding ASCII code. There is
no case translation within strings, and thus both upper and lower
case characters can be represented. Note however, that only
graphic (printing) ASCII characters are allowed within strings.
Valid strings are

’A’ ’AB’ ab’ ’c’
J J J J 7 7 7 7 7 7 7 7 7 J J 3a
Walla Walla Wash.’
She said “Hello” to me.’
‘I said “Hello” to her.’

Arithmetic and Logical Operators
The operands described above can be combined in normal algebraic
notation using any combination of properly formed operands,
operators, and parenthesized expressions.

The operators recognized in the operand field are

a+b unsigned arithmetic sum of a and b
a-b unsigned arithmetic difference between

a and b

24 CP/M Reference Manual

+b
-b
a * b
a / b
a MOD b
NOT b

a AND b
a OR b
aXOR b
aSHLb

a SHR b

unary plus (produces b)
unary minus (identical to 0 — b)
unsigned magnitude multiplication of a and b
unsigned magnitude division of a by b
remainder after a / b
logical inverse of b (all 0’s become 1 s, 1 s
become 0’s), where b is considered a
16-bit value
bit-by-bit logical and of a and b
bit-by-bit logical or of a and b
bit-by-bit logical exclusive or of a and b
the value which results from shifting a to the
left by an amount b, with zero fill
the value which results from shifting a to
the right by an amount b, with zero fill

In each case, a and b represent simple operands (labels, numeric
constants, reserved words, and one or two character strings), or
fully enclosed parenthesized subexpressions such as

10+20 10h+37Q
(‘a’ and 5fh) + ‘0’
(1+(2+c)) shr (A— (B+1))

L1/3 (L2+4)SHR3
fB’+B) OR (PSW+M)

Note that all computations are performed at assembly time as
16-bit unsigned operations. Thus, —1 is computed as 0—1 which
results in the value Offffh (i.e., all 1 ’s). The resulting expression
must fit the operation code in which it is used. If, for example, the
expression is used in a ADI (add immediate) instructions, then
the high order eight bits of the expression must be zero. As a
result, the operation “ADI —1” produces an error message (— 1
becomes Offffh which cannot be represented as an 8 bit value),
while “ADI (—1) AND OFFH” is accepted by the assembler since
the “AND” operation zeroes the high order bits of the expression.

CP/M Assembler 125

Precedence of Operators
As a convenience to the programmer, ASM assumes that operators
have a relative precedence of application which allows the
programmer to write expressions without nested levels of
parentheses. The resulting expression has assumed parentheses
which are defined by the relative precedence. The order of
application of operators in unparenthesized expressions is listed
below. Operators listed first have highest precedence (they are
applied first in an unparenthesized expression), while operators
listed last have lowest precedence. Operators listed on the same
line have equal precedence, and are applied from left to right as
they are encountered in an expression

*/MODSHLSHR
- +
NOT
AND
OR XOR

Thus, the expressions shown to the left below are interpreted by
the assembler as the fully parenthesized expressions shown to the
right below

a * b + c (a * b) + c
a + b * c a + (b * c)
aMODb*cSHLd ((a MOD b) * c) SHL d
a OR b AND NOT c + d SHL e a OR (b AND (NOT (c + (d SHL e))))

Balanced parenthesized subexpressions can always be used to
override the assumed parentheses, and thus the last expression
above could be rewritten to force application of operators in a
different order as

(a OR b) AND (NOT c) + d SHL e

resulting in the assumed parentheses

(a OR b) AND ((NOT c) + (d SHL e))

Note that an unparenthesized expression is well-formed only if
the expression which results from inserting the assumed
parentheses is well-formed.

26 CP/M Reference Manual

Assembler Directives

Assembler directives are used to set labels to specific values
during the assembly, perform conditional assembly, define storage
areas, and specify starting addresses in the program. Each assembler
directive is denoted by a “pseudo operation” which appears in
the operation field of the line. The acceptable pseudo operations
are

ORG set the program or data origin
END end program, optional start address
EQU numeric “equate”
SET numeric “set”
IF
ENDIF
DB
DW
DS

begin conditional assembly
end of conditional assembly
define data bytes
define data words
define data storage area

The ORG Directive
The ORG statement takes the form

label ORG expression

where “label” is an optional program label, and expression is a
16-bit expression, consisting of operands which are defined
previous to the ORG statement. The assembler begins machine
code generation at the location specified in the expression.
There can be any number of ORG statements within a particular
program, and there are no checks to ensure that the programmer
is not defining overlapping memory areas. Note that most programs
written for the CP/M system begin with an ORG statement of the
form

ORG 100H

which causes machine code generation to begin at the base of the
CP/M transient program area. If a label is specified in the ORG
statement, then the label is given the value of the expression (this
label can then be used in the operand field of other statements
to represent this expression).

CP/M Assembler 127

The END Directive
The END statement is optional in an assembly language program,
but if it is present it must be the last statement (all subsequent
statements are ignored in the assembly). The two forms of the END
directive are

label END
label END expression

where the label is again optional. If the first form is used, the
assembly process stops, and the default starting address of the
program is taken as 0000. Otherwise, the expression is evaluated,
and becomes the program starting address (this starting address
is included in the last record of the Intel formatted machine code
“hex” file which results from the assembly). Thus, most CP/M
assembly language programs end with the statement

END 100H

resulting in the default starting address of 100H (beginning of the
transient program area).

The EQU Directive
The EQU (equate) statement is used to set up synonyms for
particular numeric values. The form is

label EQU expression

where the label must be present, and must not label any other
statement. The assembler evaluates the expression, and assigns
this value to the identifier given in the label field. The identifier is
usually a name which describes the value in a more human-oriented
manner. Further, this name is used throughout the program to
“parameterize” certain functions. Suppose for example, that data
received from a Teletype appears on a particular input port, and
data is sent to the Teletype through the next output port in
sequence.

128 CP/M Reference Manual

The series of equate statements could be used to define these
ports for a particular hardware environment

TTYBASE EQU 10H ;BASE PORT NUMBER FOR TTY
TTYIN EQU TTYBASE ;TTY DATA IN
TTYOUT EQU TTYBASE+1 ;TTY DATA OUT

At a later point in the program, the statements which access the
Teletype could appear as

IN TTYIN ;READ TTY DATA TO REG-A

OUT TTYOUT ;WRITE DATA TO TTY FROM REG-A

making the program more readable than if the absolute I/O ports
had been used. Further, if the hardware environment is redefined
to start the Teletype communications ports at 7FH instead of 10H,
the first statement need only be changed to

TTYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other
statement.

The SET Directive
The SET statement is similar to the EQU, taking the form

label SET expression

except that the label can occur on other SET statements within
the program. The expression is evaluated and becomes the current
value associated with the label. Thus, the EQU statement defines

CP/M Assembler 129

a label with a single value, while the SET statement defines a value
which is valid from the current SET statement to the point where
the label occurs on the next SET statement. The use of the SET is
similar to the EQU statement, but is used most often in controlling
conditional assembly.

The IF and ENDIF Directives
The IF and ENDIF statements define a range of assembly language
statements which are to be included or excluded during the
assembly process. The form is

IF expression
statement #1
statement #2

statement #n
ENDIF

Upon encountering the IF statement, the assembler evaluates
the expression following the IF (all operands in the expression
must be defined ahead of the IF statement). If the expression
evaluates to a non-zero value, then statement #1 through statement
#n are assembled; if the expression evaluates to zero, then the
statements are listed but not assembled. Conditional assembly is
often used to write a single “generic” program which includes a
number of possible run-time environments, with only a few specific
portions of the program selected for any particular assembly. The
following program segments for example, might be part of a program
which communicates with either a Teletype or a CRT console
(but not both) by selecting a particular value for TTY before the
assembly begins.

130 CP/M Reference Manual

TRUE
FALSE

EQU
EQU

OFFFFH
NOT TRUE

;DEFINE VALUE OF TRUE
;DEFINE VALUE OF FALSE

TTY EQU TRUE ;TRUE IF TTY, FALSE IF CRT

TTYBASE EQU 10H ;BASE OF TTY I/O PORTS
CRTBASE EQU 20H ;BASE OF CRT I/O PORTS

IF TTY ASSEMBLE RELATIVE TO
TTYBASE

CONIN EQU TTYBASE ;CONSOLE INPUT
CONOUT EQU

ENDIF
TTYBASE+1 ;CONSOLE OUTPUT

IF NOT TTY ASSEMBLE RELATIVE TO
CRTBASE

CONIN EQU CRTBASE ;CONSOLE INPUT
CONOUT EQU

ENDIF
CRTBASE+1 ;CONSOLE OUTPUT

IN CONIN ;READ CONSOLE DATA

OUT CONOUT ;WRITE CONSOLE DATA

In this case, the program would assemble for an environment
where a Teletype is connected, based at port 10H. The statement
defining TTY could be changed to

TTY EQU FALSE

and, in this case, the program would assemble for a CRT based at
port 20H.

CP/M Assembler 131

The DB Directive
The DB directive allows the programmer to define initialized
storage areas in single precision (byte) format. The statement form
is

label DB e#1, e#2,e#n

where e#1 through e#n are either expressions which evaluate to
8-bit values (the high order eight bits must be zero), or are ASCII
strings of length no greater than 64 characters. There is no
practical restriction on the number of expressions included on a
single source line. The expressions are evaluated and placed
sequentially into the machine code file following the last program
address generated by the assembler. String characters are
similarly placed into memory starting with the first character and
ending with the last character. Strings of length greater than two
characters cannot be used as operands in more complicated
expressions (i.e., they must stand alone between the commas).
Note that ASCII characters are always placed in memory with the
parity bit reset (0). Further, recall that there is no translation from
lower to upper case within strings. The optional label can be used
to reference the data area throughout the remainder of the
program. Examples of valid DB statements are

data and Offh,5,377Q,1 +2+3+4
‘please type your name’,or,If,0
AB’ SHR8, C, ‘DE’ AND 7FH

data: DB
DB

signon: DB
DB

The DW Directive
The DW statement is similar to the DB statement except double
precision (two byte) words of storage are initialized. The form is

label DW e#1 ,d#2,..., e#n

where e#1 through e#n are expressions which evaluate to 16-bit
results. Note that ASCII strings of length one or two characters are
allowed, but strings longer than two characters disallowed. In all
cases, the data storage is consistent with the 8080 processor: the
least significant byte of the expression is stored first in memory,

132 CP/M Reference Manual

followed by the most significant byte. Examples are

doub: DW 0ffefh,doub+4,signon-$,255+255
DW ’a’, 5,'ab',’CD', 6shl8or11b

The DS Directive
The DS statement is used to reserve an area of uninitialized
memory, and takes the form

label DS expression

where the label is optional. The assembler begins subsequent
code generation after the area reserved by the DS. Thus, the DS
statement given above has exactly the same effect as the
statement

label: EQU $;LABEL VALUE IS CURRENT CODE LOCATION
ORG $ +expression ;MOVE PAST RESERVED AREA

Operation Codes

Assembly language operation codes form the principal part of
assembly language programs, and form the operation field of the
instruction. In general, ASM accepts all the standard mnemonics
for the Intel 8080 microcomputer, which are given in detail in the
Intel manual 8080 Assembly Language Programming Manual. Labels
are optional on each input line and, if included, take the value of
the instruction address immediately before the instruction is issued.
The individual operators are listed briefly in the following sections
for completeness, although it is understood that the Intel manuals
should be referenced for exact operator details. In each case,

e3 represents a 3-bit value in the range of 0-7 which
can be one of the predefined registers A, B, C,
D, E, H, L, M, SR or PSW.

e8 represents an 8-bit value in the range 0-255

e16 represents a 16-bit value in the range 0-65535

CP/M Assembler 133

which can themselves be formed from an arbitrary combination
of operands and operators. In some cases, the operands are
restricted to particular values within the allowable range, such as
the PUSH instruction. These cases will be noted as they are
encountered.

In the sections which follow, each operation code is listed in its
most general form, along with a specific example, with a short
explanation and special restrictions.

Jumps, Calls and Returns
The Jump, Call and Return instructions allow several different
forms which test the condition flags set in the 8080 microcomputer
CPU. The forms are

JMB e16 JMP L1 Jump unconditionally to label

JNZ e16 JMP L2 Jump on non zero condition to label

JZ e16 JMP 100H Jump on zero condition to label

JNC e16 JNC L1+4 Jump no carry to label

JC e16 JC L3 Jump on carry to label

JPO e16 JPO $+8 Jump on parity odd to label

JPE e16 JPE L4 Jump on even parity to label

JP e16 JP GAMMA Jump on positive result to label

JM e16 JM al Jump on minus to label

CALL e16 CALL S1 Call subroutine unconditionally

CNZ e16 CNZ S2 Call subroutine if non zero flag

CZ e16 CZ 100H Call subroutine on zero flag

CNC e16 CNC S1+4 Call subroutine if no carry set

CC e16 CC S3 Call subroutine if carry set

CPO e16 CPO $+8 Call subroutine if parity odd

CPE e16 CPE S4 Call subroutine if parity even

CP e16 CP GAMMA Call subroutine if positive result

134 CP/M Reference Manual

CM e16 CM b1$c2

RST e3 RST 0

RET
RNZ

RZ

RNC

RC
RPO
RPE
RP

RM

Call subroutine if minus flag

Programmed “restart,” equivalent to
CALL 8*e3, except one byte call

Return from subroutine
Return if non zero flag set

Return if zero flag set
Return if no carry

Return if carry flag set
Return if parity is odd
Return if parity is even

Return if positive result

Return if minus flag is set

Immediate Operand Instructions
Several instructions are available which load single or double
precision registers, or single precision memory cells, with constant
values, along with instructions which perform immediate arithmetic
or logical operations on the accumulator (register A).

MVI e3,e8 MVI B,255

ADI e8 ADI 1

ACI e8 ACI OFFH

SUI e8 SUI L + 3

SBI e8 SBI LAND 11B

ANI e8 ANI $ AND 7FH

Move immediate data to
register A, B, C, D, E, H, L,
or M (memory)

Add immediate operand to A
without carry

Add immediate operand to A
with carry

Subtract from A without
borrow (carry)

Subtract from A with borrow
(carry)

Logical “and” A with
immediate data

CP/M Assembler 135

XRI e8 XRI 1111$0000B

ORI e8 ORI LAND 1 + 1

CPI e8 CPI ’a’

“Exclusive or” A with
immediate data
Logical “or” A with
immediate data

Compare A with immediate
data (same as SUI except
register A not changed)

LXIe3,e16 LXI B,100H Load extended immediate to
register pair (e3 must be
equivalent to B, D, H, or SP)

Increment and Decrement Instructions
Instructions are provided in the 8080 repertoire for incrementing
or decrementing single and double precision registers. The
instructions are

INR e3 INR IE Single precision increment
register (e3 produces one of
A, B, C, D, E, H, L, M)

DCR e3 DCR > Single precision decrement
register (e3 produces one of
A, B, C, D, E, H, L, M)

INX e3 INX ISP Double precision increment
register pair (e3 must be
equivalent to B, D, H, or SP)

DCX e3 DCX B Double precision decrement
register pair (e3 must be
equivalent to B, D, H, or SP)

OUT e8 OUT 255 Send data from register A
to port e8

136 CP/M Reference Manual

Data Movement Instructions
Instructions which move data from memory to the CPU and from
CPU to memory are given below

MOV e3,e3 MOV ,A,B Move data to leftmost
element from rightmost
element (e3 produces one of
A, B,C, D, E, H, L, orM).
MOV M,M is disallowed

LDAX e3 LDAX B Load register A from
computed address (e3 must
produce either B or D)

STAX e3 STAX D Store register A to computed
address (e3 must produce
either B or D)

LHLD e16 LHLD IL1 Load HL direct from
location e16 (double
precision load to H and L)

SHLD e16 SHLD IL5+x Store HL direct to location
e16 (double precision store
from H and L to memory)

LDA e16 LDA <Samma Load register A from
address e16

STA e16 STA X3-5 Store register A into memory
at e16

POP e3 POP IPSW Load register pair from
stack, set SP (e3 must
produce one of B, D, H,
or PSW)

PUSH e3 PUSH IB Store register pair into stack,
set SP (e3 must produce
one of B, D, H, or PSW)

IN e8 IN (3 Load register A with data
from port e8

OUT e8 OUT :255 Send data from register A
to port e8

CP/M Assembler 137

PCHL

SPHL

XCHG

n

n

Exchange DE pair with HL
pair

Fill stack pointer with data
from HL

Exchange data from top of
stack with HL
Fill program counter with
data from HL

Arithmetic Logic Unit Operations
Instructions which act upon the single precision accumulator to
perform arithmetic and logic operations are

ADD e3 ADD B Add register given by e3 to
accumulator without carry
(e3 must produce one of
A, B, C, D, E, H, or L)

ADC e3 ADC I— Add register to A with carry,
e3 as above

SUB e3 SUB H Subtract reg e3 from A
without carry, e3 is defined
as above

SBB e3 SBB 2 Subtract register e3 from A
with carry, e3 defined
as above

ANA e3 ANA 1 + 1 Logical “and” reg with A, e3
as above

XRA e3 XRA A “Exclusive or” with A, e3
as above

ORA e3 ORA B Logical “or” with A, e3
defined as above

CMP e3 CMP H Compare register with A, e3
as above

138 CP/M Reference Manual

DAA

CMA

STC

CMC

RLC

RRC

RAL

RAR

DAD e3 DAD B

Decimal adjust register A
based upon last arithmetic
logic unit operation

Complement the bits in
register A
Set the carry flag to 1
Complement the carry flag

Rotate bits left, (re)set carry
as a side effect (high order
A bit becomes carry)

Rotate bits right, (re)set
carry as side effect (low
order A bit becomes carry)

Rotate carry/A register to
left (carry is involved in
the rotate)

Rotate carry/A register to
right (carry is involved in
the rotate)

Double precision add
register pair e3 to HL (e3
must produce B, D, H, or SP)

Control Instructions
The four remaining instructions are categorized as control
instructions, and are listed below

HLT Halt the 8080 processor

DI Disable the interrupt system

El Enable the interrupt system
NOP No operation

CP/M Assembler 139

Error Messages

When errors occur within the assembly language program, they
are listed as single character flags in the leftmost position of the
source listing. The line in error is also echoed at the console so
that the source listing need not be examined to determine if errors
are present. The error codes are

D Data error: element in data statement cannot be
placed in the specified data area

E Expression error: expression is ill-formed and
cannot be computed at assembly time

L Label error: label cannot appear in this context
(may be duplicate label)

N Not implemented: features which will appear in
future ASM versions (e.g., macros) are recognized,
but flagged in this version

O Overflow: expression is too complicated (i.e., too
many pending operators) to compute; simplify it

P Phase error: label does not have the same value
on two subsequent passes through the program

R Register error: the value specified as a register is
not compatible with the operation code

V Value error: operand encountered in expression is
improperly formed

140 CP/M Reference Manua

Several error messages are printed which are due to terminal
error conditions

NO SOURCE FILE
PRESENT

NO DIRECTORY SPACE

SOURCE FILE NAME
ERROR

SOURCE FILE READ
ERROR

OUTPUT FILE WRITE
ERROR

CANNOT CLOSE FILE

The file specified in the ASM
command does not exist on
disk

The disk directory is full; erase
files which are not needed,
and retry

Improperly formed ASM file
name (e.g., it is specified with
“?” fields)

Source file cannot be read
properly by the assembler,
execute a TYPE to determine
the point of error
Output files cannot be written
properly, most likely cause is
a full disk; erase and retry

Output file cannot be closed,
check to see if disk is write
protected

A Sample Session

The following session shows interaction with the assembler and
debugger in the development of a simple assembly language
program.

ASM SORT Assemble SORTASM

CP/M ASSEMBLER - VER 1 0

015C next free address
003H USE FACTOR % of table used 00 to FF (hexadecimal)
END OF ASSEMBLY

DIR SORT*

M

? -- .■ ,.- /.- - ‘ ■-•_ " -5 --• - ;•- -' - ■'■■ - - - '

CP/M Assembler 141

H

H

N

n
M
n

SORT ASM source file
SORT BAK backup from last edit
SORT PRN print file (contains tab characters)
SORT HEX machine code file
A>TYPE SORT PRN

Source line

machine code SORT PROGRAM IN CP/M ASSEMBLY LANGUAGE^
location, J START AT THE BEGINNING OF THE TRANSIENT PROGRAM AR
0100 ORG 100H

generated machine code

0100 214601 SORT LXI H, SW ; ADDRESS SWITCH TOGGLE
0103 3601 MVI M, 1 ; SET TO 1 FOR FIRST ITERATION
0105 214701 LXI H, I ;ADDRESS INDEX
0108 3600 MVI M, 0 ; I = 0

COMPARE I WITH ARRAY SIZE
01OA 7E COMP: MOV A, M ; A REGISTER = I
010B FE09 CPI N-1 ;CYSET IF I < (N-1)
010D D21901 JNC CONT ; CONTINUE IF I < =

0110 214601
0113 7EB7C20001

END OF ONE PASS THROUGH DATA
LXI H,SW ; CHECK FOR ZERO SWITCHES
MOV A,M! ORA A! JNZ SORT ; END OF SORT IF SW=0

0118 FF RST7 ; GO TO THE DEBUGGER INSTEAD OF RE

0119

’truncated
CONTINUE THIS PASS
ADDRESSING I, SO LOAD AV(I) INTO REGISTERS

5F16002148CONT: MOV E,A! MVI D,0! LXI H,AV! DAD D’ DAD D
0121 4E792346 MOV C.M! MOV A,C! INX H! MOV B M

LOW ORDER BYTE IN A AND C, HIGH ORDER BYTE IN B

0125 23

0126 965778239E ’

012B DA3F01

012E B2CA3F01
0132 56702B5E
0136 712B722B73

013B 21460134
J

013F 21470134C3INCI:

0146 00 SW:
0147 I:
0148 050064001 EAV:
000A = N
015C equate value

MOV H AND LTO ADDRESS AV(I + 1)
INX H

COMPARE VALUE WITH REGS CONTAINING AV(I)
SUB M! MOV D,A! MOV A,B! INX H! SBB M ; SUBTRACT

BORROW SET IF AV(I + 1) > AV(I)
JC INCI ; SKIP IF IN PROPER ORDER

CHECK FOR EQUAL VALUES
ORA D!JZ INCI ; SKIP IF AV(I) = AV(I + 1)
MOV D,M! MOV M,B! DCX H! MOV E,M
MOV M,C! DCX H! MOV M,D! DCX H! MOV M.E

INCREMENT SWITCH COUNT
LXI H,SW! INR M

INCREMENT I
LXI H.l! INR Ml JMPCOMP

DATA DEFINITION SECTION
DB 0 ; RESERVE SPACE FOR SWITCH COUNT
DS 1 ; SPACE FOR INDEX
DW 5,100,30,50,20,7,1000,300,100,-32767
EQU ($-AV)/2 ; COMPUTE N INSTEAD OF PRE
END

142 CP/M Reference Manual

A>TYPE SORT.HEX

: 10010000214601360121470136007EFE09D2190140 \
: 100110002146017EB7C20001 FF5F16002148011983 /
: 10012000194E79234623965778239EDA3F01B2CAA7 (machine code
:100130003F0156702B5E712B722B732146013421C7 (in HEX format
:07014000470134C30A01006E \
:10014800050064001E00320014000700E8032C01 BB I
:0401580064000180BE 7
:0000000000
A>DDT SORT.HEX start debug run

16K DDT VER 1.0
NEXT PC
815C 0000 default address (no address on END statement)
-XP

P=0000 100 change PC to 100

-XP

— UFFFF untrace for 65535 steps abort with
rubout

H,0146*0100C0Z0M0E0I0
—T10 tract

A=00 B=0000
e 1016 steps

D=0000 H=0000 S=0100 P=0100 LXI

C0Z0M0E0I0 A=01 B=0000 D=0000 H=0146 S=0100 P=0100 LXI H.0146
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0103 MVI M,01
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0105 LXI H,0147
COZOMOEOIO A=01 B=0000 D=0000 H=0147 S=0100 P=0108 MVI M,00
COZOMOEOIO A=01 B=0000 D=0000 H=0147 S=0100 P=010A MOV A,M
COZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=010B CPI 09
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=010D JNC 0119
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=0110 LXI H,0146
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0146 S=0100 P=0113 MOV A,M
C1Z0M1E0I0 A=01 B=0000 D=0000 H=0146 S=0100 P=0114 ORA A
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0115 JNZ 0100
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0100 LXI H.0146
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0103 MVI M,01
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0105 LXI H.0147
COZOMOEOIO A=01 B = 0000 D=0000 H=0147 S=0100 P=0108 MVI M,00
COZOMOEOIO A=01 B=0000 D=0000 H=0147 S=0100 P=010A MOV A,M*010B
-A10D

stopped at
010D JC 119 change to a jump on carry 10BH
0110

P=01 OB 100 reset program counter back to beginning of program

—T10 trace execution for 10H steps

Automatic
breakpoint

COZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=0100 LXI H.0146
COZOMOEOIO A=00 B = 0000 D=0000 H=0146 S=0100 P=0103 MVI M,01
COZOMOEOIO A=00 B=0000 D=0000 H=0146 S=0100 P=0105 LXI H.0147
COZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=0108 MVI M’OO , altered instruction
COZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=010A MOV A.M /
COZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=010B CPI 09 /
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=010D JC 0119
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=0119 MOV E,A
C1Z0M1E0I0 A=00 B=0000 D^OOOO H=0147 S = 0100 P=011A MVI D,00
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=011C LXI H.0148
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0148 S=0100 P=011F DAD D
C0Z0M1E0I0 A=00 B=0000 D=0000 H=0148 S=0100 P=0120 DAD D
C0Z0M1E0I0 A-00 B=0000 D-0000 H=0148 S=0100 P=0121 MOV C,M
C0Z0M1E0I0 A=00 B=0005 D-0000 H=0148 S=0100 P=0122 MOV A,C
C0Z0M1E0I0 A=05 B=0005 D=0000 H=0148 S=0100 P=0123 INX H
C0Z0M1E0I0 A—05 B = 0005 D-0000 H=0149 S=0100 P=0124 MOV B,M*0125

CP/M Assembler 143

■

II

M
n

H
H
■
n
n
n
n
■
n
■
■

■
■

-L100

0100 LXI H,0146
0103 MVI M,01
0105 LXI H.0147
0108 MVI M,00
01OA MOV A,M
010B CPI 09
010D JC 0119
0110 LXI H.0146
0113 MOV A.M
0114 ORA A
0115 JNZ 0100
— L

0118 RST 07
0119 MOV E.A
011A MVI D,00
011C LXI H.0148
— abort list with rubout

list some code
from 100H

list more

—G,118 start program from current PC (0125H) and run in real time to 11BH

*0127 stopped with an external interrupt 7 from front panel (program was looping indefinitely)

look at looping program in trade mode

-D148

C0Z0M0E0I0 A=38 B=0064 D=0006 H = 0156 S=0100 P=0127 MOV D,A
COZOMOEOIO A=38 B=0064 D = 3806 H=0156 S=0100 P=0128 MOV A,B
COZOMOEOIO A=00 B=0064 D=3806 H=0156 S = 0100 P=0129 INX H
COZOMOEOIO A=00 B=0064 D=3806 H=0157 S=0100 P=012A SBB M*012B

^^data is sorted,but program doesn’t stop
0148 05 00 07 00 14 00 1E 00
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00 2 D. D
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
— GO return to CP/M

DDT SORT.HEX reload the memory image

16K DDT VER 1.0
NEXT PC
015C 0000
-XP

P=0000 100 Set PC to beginning of program

-L10D

010D JNC
0110 LXI

list bad opcode

0119
H,0146

— abort list with rubout

-A10D assemble new opcode

010D JC 119

0110

-L100 list starting section of program

0100 LXI H,0146
0103 MVI M,01
0105 LXI H,0147
0108 MVI M,00
— abort list with rubout

—A103 change “switch” initialization to 00

0103 MVI M,0

0105

— " C return to CP/M with ctl-c (GO works as well)

144 CP/M Reference Manual

SAVE 1 SORT.COM save 1 page (256 bytes, from 100H to 1FFMH) on disk in case
we have to reload later

A DDT SORT.COM restart DDT with
saved memory image

16K DDT VER 1.0
NEXT PC
0200 0100 “COM” file always starts with address 100H
— G run the program from PC=100H

*0118 programmed stop (RST 7) encountered
-D148

data properly sorted

0148 05 00 07 00 14 00 1E 00
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00 2 . D . D
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00.....................
0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00.....................

— GO return to CP/M
ED SORT. ASM make changes to original program

ctl-Z

*E

*N,0*Z0TT find next ”,0”
; I = 0MVI M.O

*— up one line in text
LX I H.l ;ADDRESS INDEX

*— up another line
MVI M,1 ; SET TO 1 FOR FIRST ITERATION

*KT kill line and type next line
LXI H,l ;ADDRESS INDEX

*l insert new line
MVI M.O ;ZERO SW

*T
LXI H,l ;ADDRESS INDEX

*NJNC"Z0T
JNC*T

CONT ; CONTINUE IF I <= (N-2)
*—2DIC"Z0LT

JC CONT .CONTINUE IF I <= (N-2)
source from disk A
— hex to disk A

ASM SORT.AAZ-"------skip pm file

CP/M ASSEMBLER - VER 1.0

015C next address to assemble
003H USE FACTOR
END OF ASSEMBLY

DDT SORTHEX test program changes
16K DDT VER 1.0
NEXT PC
015C 0000
-G100

*0118
-D148 , + t .data sorted

0148 B5 00 07 00 14 00 1E 00
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00 . 2 . D . D . ,
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

— abort with rubout

— GO return to CP/M — program checks OK.

SORT.COM
SORT.COM

CP/M Dynamic Debugging Tool 145

5
i l \ I HHHBHII i I I I I I II -| | I I | 1 I * t I f >

I____ J____r T r

CP/M Dynamic Debugging Tool

146 Introduction
149 DDT Commands
150 The A (Assemble) Command
150 The D (Display) Command
151 The F (Fill) Command
152 The G (Go) Command
153 The I (Input) Command
153 The L (List) Command
154 The M (Move) Command
154 The R (Read) Command
155 The S (Set) Command
156 The T (Trace) Command
157 The U (Untrace) Command
157 The X (Examine) Command
158 Implementation Notes
159 Sample Session

146 CP/M Reference Manual

5
CP/M Dynamic Debugging Tool

Introduction

The DDT program allows dynamic interactive testing and debugging
of programs generated in the CP/M environment. The debugger
is initiated by typing one of the following commands at the CP/M
Console Command level

DDT
DDT filename.HEX
DDT filename.COM

where “filename” is the name of the program to be loaded and
tested. In both cases, the DDT program is brought into main
memory in the place of the Console Command Processor (refer
to the CP/M Interface Guide for standard memory organization),
and thus resides directly below the Basic Disk Operating System
portion of CP/M. The BDOS starting address, which is located in
the address field of the JMP instruction at location 5H, is altered
to reflect the reduced Transient Program Area size.

The second and third forms of the DDT command shown above
perform the same actions as the first, except there is a subsequent

filename.COM

CP/M Dynamic Debugging Tool 147

automatic load of the specified HEX or COM file. The action is
identical to the sequence of commands

DDT
Ifilename.HEX or lfilename.COM
R

where the I and R commands set up and read the specified
program to test. (See the explanation of the I and R commands
below for exact details.)

Upon initiation, DDT prints a sign-on message in the format

DDT VER m.m

where

Digital Research standard version
MDS version
IMSAI standard version
Omron systems
Digital Systems standard version

D
M

O
S

m.m is the revision number.

Following the sign on message, DDT prompts the operator with the
character and waits for input commands from the console.
The operator can type any of several single characters commands,
terminated by a carriage return to execute the command. Each
line of input can be line-edited using the standard CP/M controls

rubout remove the last character typed
Control-X remove the entire line, ready for re-typing
Control-C system reboot

Any command can be up to 32 characters in length (an automatic
carriage return is inserted as the 33rd character), where the first
character determines the command type.

lfilename.COM

148 CP/M Reference Manual

A enter assembly language mnemonics with
operands

D display memory in hexadecimal and ASCII

F fill memory with constant data
G begin execution with optional breakpoints

I set up a standard input file control block
L list memory using assembler mnemonics

M move a memory segment from source to
destination

R read program for the subsequent testing

S substitute memory values
T trace program execution

U untraced program monitoring

X examine and optionally alter the CPU state

The command character, in some cases, is followed by zero, one,
two, or three hexadecimal values which are separated by commas
or single blank characters. All DDT numeric output is in hexadecimal
form. In all cases, the commands are not executed until the
carriage return is typed at the end of the command.

At any point in the debug run, the operator can stop execution of
DDT using either a Control-C or GO (jump to location 0000H), and
save the current memory image using a SAVE command of the
form

SAVE n filename.COM

where n is the number of pages (256 byte blocks) to be saved on
disk. The number of blocks can be determined by taking the high
order byte of the top load address and converting this number to
decimal. For example, if the highest address in the Transient
Program Area is 1234H then the number of pages is 12H, or 18
in decimal. Thus the operator could type a Control-C during the

filename.COM

CP/M Dynamic Debugging Tool 149

■
II
n

■
■
■
■
n
n
■

■
R
■
n
■

■
ii
■

debug run, returning to the Console Processor level, followed by

SAVE 18X.COM

The memory image is saved as X.COM on the diskette, and can
be directly executed by simply typing the name X. If further testing
is required, the memory image can be recalled by typing

DDTX.COM

which reloads the previously saved program from location 100H
through page 18 (12FFH). The machine state is not a part of the
COM file, and thus the program must be restarted from the
beginning in order to properly test it.

DDT Commands

The individual commands are given below in some detail. In
each case, the operator must wait for the prompt character (-)
before entering the command. In the explanation of each command,
the command letter is shown in some cases with numbers
separated by commas, where the numbers are represented by
lower case letters. These numbers are always assumed to be in a
hexadecimal radix, and from one to four digits in length (longer
numbers will be automatically truncated on the right).

Many of the commands operate upon a “CPU state” which
corresponds to the program under test. The CPU state holds the
registers of the program being debugged, and initially contains
zeroes for all registers and flags except for the program counter (P)
and stack pointer (S), which default to 100H. The program
counter is subsequently set to the starting address given in the last
record of a HEX file if a file of this form is loaded (see the I and R
commands).

18X.COM
X.COM
DDTX.COM

150 CP/M Reference Manual

The A (Assemble) Command

DDT allows inline assembly language to be inserted into the current
memory image using the A command which takes the form

As

where s is the hexadecimal starting address for the inline
assembly. DDT prompts the console with the address of the next
instruction to fill, and reads the console, looking for assembly
language mnemonics (see the Intel 8080 Assembly Language
Reference Card for a list of mnemonics), followed by register
references and operands in absolute hexadecimal form. Each
successive load address is printed before reading the console.
The A command terminates when the first empty line is input from
the console.

Upon completion of assembly language input, the operator can
review the memory segment using the DDT disassembler. (See the
L command.)

Note that the assembler/disassembler portion of DDT can be
overlayed by the transient program being tested, in which case the
DDT program responds with an error condition when the A and L
commands are used.

The D (Display) Command

The D command allows the operator to view the contents of
memory in hexadecimal and ASCII formats. The forms are

D
Ds
Ds,f

In the first case, menu ry is displayed from the current display
address (initially 10OH), and continues for 16 display lines. Each
display line takes the form shown below

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb cccccccccccccccc

CP/M Dynamic Debugging Tool 151

II
n
ii
ii
ii
■

where aaaa is the display address in hexadecimal, and bb represents
data present in memory starting at aaaa. The ASCII characters
starting at aaaa are given to the right (represented by the sequence
of c’s), where non-graphic characters are printed as a period (.)
symbol. Note that both upper and lower case alphabetics are
displayed, and thus will appear as upper case symbols on a
console device that supports only upper case. Each display line
gives the values of 16 bytes of data, except that the first line
displayed is truncated so that the next line begins at an address
which is the multiple of 16.

■
■
■
n
■
■
■
n
■
■
n
■

The second form of the D command shown above is similar to
the first, except that the display address is first set to address s.
The third form causes the display to continue from address s
through address f. In all cases, the display address is set to the first
address not displayed in this command, so that a continuing
display can be accomplished by issuing successive D commands
with no explicit addresses.

Excessively long displays can be aborted by pushing the rubout
key.

The F (Fill) Command

The F command takes the form

Fs,f,c

where s is the starting address, f is the final address, and c is a
hexadecimal byte constant. The effect is as follows: DDT stores the
constant c at address s, increments the value of s and tests
against f. If s exceeds f then the operation terminates, otherwise
the operation is repeated. Thus, the fill command can be used to
set a memory block to a specific constant value.

152 CP/M Reference Manual

The G [Go) Command

Program execution is started using the G command, with up to two
optional breakpoint addresses. The G command takes one of the
forms

G
Gs
Gs,b
Gs,b,c
G,b
G,b,c

The first form starts execution of the program under test at the
current value of the program counter in the current machine
state, with no breakpoints set. The current program counter can be
viewed by typing an X or XP command. The second form is
similar to the first except that the program counter in the current
machine state is set to address s before execution begins. The
third form is the same as the second, except that program execution
stops when address b is encountered (b must be in the area of
the program under test). The instruction at location b is not executed
when the breakpoint is encountered. The fourth form is identical
to the third, except that two breakpoints are specified, one at b and
the other at c. Encountering either breakpoint causes execution
to stop, and both breakpoints are subsequently cleared. The last
two forms take the program counter from the current machine
state, and set one and two breakpoints, respectively.

Execution continues from the starting address in real-time to the
next breakpoint. That is, there is no intervention between the
starting address and the break address by DDT. Thus, if the program
under test does not reach a breakpoint, control cannot return to
DDT. Upon encountering a breakpoint, DDT stops execution and
types

*d

where d is the stop address. The machine state can be examined
at this point using the X (Examine) command. The operator must
specify breakpoints which differ from the program counter address

CP/M Dynamic Debugging Tool 153

at the beginning of the G command. Thus, if the current program
counter is 1234H, then the commands

G,1234
and

G400.400

both produce an immediate breakpoint, without executing any
instructions whatsoever.

The I (Input) Command

The I command allows the operator to insert a file name into the
default file control block at 5CH (the file control block created by
CP/M for transient programs is placed at this location; see the
CP/M Interface Guide). The default FCB can be used by the
program under test as if it had been passed by the CP/M Console
Processor. Note that this file name is also used by DDT for
reading additional HEX and COM files. The form of the I command is

(filename
or

Ifilename. filetype

If the second form is used, and the filetype is either HEX or
COM, then subsequent R commands can be used to read the pure
binary or hex format machine code (see the R command for
further details).

The L (List) Command

The L command is used to list assembly language mnemonics in a
particular program region. The forms are

L
Ls
Ls,f

154 CP/M Reference Manual

The first command lists twelve lines of disassembled machine
code from the current list address. The second form sets the list
address to s, and then lists twelve lines of code. The last form
lists disassembled code from s through address f. In all three cases,
the list address is set to the next unlisted location in preparation
for a subsequent L command. Upon encountering an execution
breakpoint, the list address is set to the current value of the
program confer (see the G and T commands). Again, long typeouts
can be aborted using the rubout key during the list process.

The M [Move] Command

The M command allows block movement of program or data
areas from one location to another in memory. The form is

Ms,f,d

where s is the start address of the move, f is the final address of the
move, and d is the destination address. Data is first moved from s
to d, and both addresses are incremented. If s exceeds f then the
move operation stops, otherwise the move operation is repeated.

The R [Read) Command

The R command is used in conjunction with the I command to
read COM and HEX files from the diskette into the transient
program area in preparation for the debut run. The forms are

R
Rb

where b is an optional bias address which is added to each program
or data address as it is loaded. The load operation must not
overwrite any of the system parameters from 000H through OFFH
(i.e., the first page of memory). If b is omitted, then b = 0000 is
assumed. The R command requires a previous I command,
specifying the name of a HEX or COM file. The load address for
each record is obtained from each individual HEX record, while

CP/M Dynamic Debugging Tool 155

an assumed load address of 100H is taken for COM files. Note that
any number of R commands can be issued following the I
command to re-read the program under test, assuming the tested
program does not destroy the default area at 5CH. Further, any
file specified with the filetype “COM” is assumed to contain machine
code in pure binary form (created with the LOAD or SAVE
command), and all others are assumed to contain machine code in
Intel hex format (produced, for example), with the ASM command).

Recall that the command

DDT filename.filetype

which initiates the DDT program is equivalent to the commands

H DDT
-Ifilename.filetype

H -R
H Whenever the R command is issued, DDT responds with either the

error indicator “?” (file cannot be opened, or a checksum error
occurred in a HEX file), or with a load message taking the form

The S [Set] Command

N EXT PC
nnnn pppp

where nnnn is the next address following the loaded program,
and pppp is the assumed program counter (100H for COM files, or
taken from the last record if a HEX file is specified).

The S command allows memory locations to be examined and
optionally altered. The form of the command is

Ss

where s is the hexadecimal starting address for examination and
alteration of memory. DDT responds with a numeric prompt,
giving the memory location, along with the data currently held in

156 CP/M Reference Manua

the memory location. If the operator types a carriage return, then
the data is not altered. If a byte value is typed, then the value is
stored at the prompted address. In either case, DDT continues to
prompt with successive addresses and values until either a period
(.) is typed by the operator, or an invalid input value is detected.

The T (Trace) Command

The T command allows selective tracing of program execution
for 1 to 65535 program steps. The forms are

T
Tn

In the first case, the CPU state is displayed, and the next
program step is executed. The program terminates immediately,
with the termination address displayed as

*hhhh

where hhhh is the next address to execute. The display address
(used in the D command) is set to the value of H and L, and the list
address (used in the L command) is set to hhhh. The CPU state
at program termination can then be examined using the X command.

The second form of the T command is similar to the first, except
that execution is traced for n steps (n is a hexadecimal value)
before a program breakpoint occurs. A breakpoint can be forced in
the trace mode by typing a rubout character. The CPU state is
displayed before each program step is taken in trace mode. The
format of the display is the same as described in the X command.

Note that program tracing is discontinued at the interface to
CP/M, and resumes after return from CP/M to the program under
test. Thus, CP/M functions which access I/O devices, such as
the diskette drive, run in real-time, avoiding I/O timing problems.
Programs running in trace mode execute approximately 500
times slower than real time since DDT gets control after each user
instruction is executed. Interrupt processing routines can be

CP/M Dynamic Debugging Tool 157

traced, but it must be noted that commands which use the breakpoint
facility (G, T, and U) accomplish the break using a RST 7 instruction,
which means that the tested program cannot use this interrupt
location. Further, the trace mode always runs the tested program
which interrupts enabled, which may cause problems if
asynchronous interrupts are received during tracing.

Note also that the operator should use the rubout key to get control
back to DDT during trace, in order to ensure that the trace for the
current instrucion is completed before interruption.

The U [Untrace) Command

The U command is identical to the T command except that
intermediate program steps are not displayed. The untrace mode
allows from 1 to 65535 (OFFFFH) steps to be executed in
monitored mode, and is used principally to retain control of an
executing program while it reaches steady state conditions. All
conditions of the T command apply to the U command.

The X (Examine) Command

The X command allows selective display and alteration of the
current CPU state for the program under test. The forms are

X
Xr

where r is one of the 8080 CPU registers

c Carry Flag (0/1)
z Zero Flag (0/1)
M Minus Flag (0/1)
E Even Parity Flag (0/1)
I Interdigit Carry (0/1)
A Accumulator (0-FF)
B BC register pair (O-FFFF)
D DE register pair (O-FFFF)

158 CP/M Reference Manua

In the first case, the CPU register state is displayed in the format

CfZfMfEflf A=bb B=dddd D=dddd H=dddd S=dddd P=dddd inst

where f is a 0 or 1 flag value, bb is a byte value, and dddd is a
double byte quantity corresponding to the register pair. The “inst
field contains the disassembled instruction which occurs at the
location addressed by the CPU state’s program counter.

H HL register pair (O-FFFF)
S Stack Pointer (O-FFFF)
P Program Counter (O-FFFF)

The second form allows display and optional alteration of register
values, where r is one of the registers given above (C, Z, M, E, I,
A, B, D, H, S, or P). In each case, the flag or register value is the
first displayed at the console. The DDT program then accepts
input from the console. If a carriage return is typed, then the flag or
register value is not altered. If a value in the proper range is
typed, then the flag or register value is altered. Note that BC, DE,
and HL are displayed as register pairs. Thus, the operator types
the entire register pair when B, C, or the BC pair is altered.

Implementation Notes

The organization of DDT allows certan non-essential portions to be
overlayed in order to gain a larger transient program area for
debugging large programs. The DDT program consists of two parts:
the DDT nucleus and the assembler/disassembler module. The
DDT nucleus is loaded over the Console Command Processor, and,
although loaded with the DDT nucleus, the assembler/disassembler
is overlayable unless used to assemble or disassemble.

In particular, the BDOS address at location 6H (address field of
the JMP instruction at location 5H) is modified by DDT to address

CP/M Dynamic Debugging Tool 159

the base location of the DDT nucleus which, in turn, contains a
JMP instruction to the BDOS. Thus, programs which use this address
field to size memory see the logical end of memory at the base
of the DDT nucleus rather than the base of the BDOS.

The assembler/disassembler module resides directly below the
DDT nucleus in the transient program area. If the A, L, T, or X
commands are used during the debugging process then the DDT
program again alters the address field at 6H to include this
module, thus further reducing the logical end of memory. If a
program loads beyond the beginning of the assembler/disassembler
module, the A and L commands are lost (their use produces a “?”
in response), and the trace and display (T and X) commands list the
“inst” field of the display in hexadecimal, rather than as a decoded
instruction.

Sample Session

The following example shows an edit, assemble, and debug for a
simple program which reads a set of data values and determines
the largest value in the set. The largest value is taken from the
vector, and stored into "LARGE” at the termination of the program.

tab character 7rubout

ED SCAN.ASM

T- i ORG T- I 100H L—LxSTART OF TRANSIENT AREA
MVI B,LEN ; LENGTH OF VECTOR TO SCAN
MVI C,0 ; LARGER-RST VALUE SO FAR

LOOP POOL LX I H, VECT ;BASE OF VECTOR
LOOP; tI MOV A,M ; GET VALUE

rubout / SUB C ; LARGER VALUE IN C?
deletes JNC NFOUND ; JUMP IF LARGER VALUE NOT FOUND

[characters NEW LARGEST VALUE, STORE IT TO C
MOV C,A

NFOUND: INX
DCR
JNZ

H ;
B ;
LOOP ;

TO NEXT ELEMENT
MORE TO SCAN?
FOR ANOTHER

Create Source
Program — underlined
characters typed

; END OF SCAN, STORE C
by programmer.

MOV A.C ; GET LARGEST VALUE
STA LARGE
JMP 0 ;REBOOT

160 CP/M Reference Manual

TEST DATA
VECT: DB 2,0,4,3,5,6,1 ,5
LEN EQU $—VECT ; LENGTH
LARGE: DS 1 ; LARGEST VALUE ON EXIT

END
Z*B0P

ORG 100H ; START OF TRANSIENT AREA
MVI B.LEN ; LENGTH OF VECTOR TO SCAN
MVI C.O ; LARGEST VALUE SO FAR
LX I H.VECT ; BASE OF VECTOR

LOOP: MOV A.M ; GET VALUE
SUB C ; LARGER VALUE IN C?
JNC NFOUND ; JUMP IF LARGER VALUE NOT FOUND
NEW LARGEST VALUE, STORE IT TO C
MOV C.A

NFOUND: INX H ;TO NEXT ELEMENT
DCR B ; MORE TO SCAN?
JNZ LOOP ; FOR ANOTHER
END OF SCAN, STORE C
MOV A.C ;GET LARGEST VALUE
STA LARGE
JMP 0 ;REBOOT

TEST DATA
VECT: DB 2,0,4,3,5,6,1,5
LEN EQU $—VECT ; LENGTH
LARGE: DS 1 ; LARGEST VALUE ON EXIT

END
— End of Edit

ASM SCAN start Assembler

CP/M ASSEMBLER - VER 1.0

0122
002H USE FACTOR
END OF ASSEMBLY Assembly Complete — Look at Program Listing

TYPE SCAN .PRN

Code Address^ Source Program
0100 Machine Code / ORG 100H ; START OF TRANSIENT AREA
0100 0608 ^MVI B,LEN ; LENGTH OF VECTOR TO SCAN
0102 OEOO^^ MVI C,0 ; LARGEST VALUE SO FAR
0104 211901 LXI H, VECT. ; BASE OF VECTOR
0107 7E LOOP: MOV A.M ; GET VALUE
0108 91 SUB C : LARGER VALUE IN C?
0109 D20D01 JNC NFOUND ; JUMP IF LARGER VALUE NOT FOUND

NEW LARGEST VALUE, STORE IT TO C
01OC 4F MOV C.A
010D 23 NFOUND INX H ;TO NEXT ELEMENT
010E 05 DCR B ; MORE TO SCAN?
010F C20701 JNZ LOOP ; FOR ANOTHER

END OF SCAN, STORE C
0112 79 MOV A,C ;GET LARGEST VALUE
0113 322101
0116 C30000

Code/data listing ;
truncated —. ;

STA
JMP

TEST DATA

LARGE
0 ;REBOOT

0119 0200040305VECT: DB 2,0,4,3,5,6,1,5
0008 = LEN

Value of) LARGE:
Equate

EQU $—VECT ; LENGTH
0121
0122

DS
END

1 ; LARGEST VALUE ON EXIT

CP/M Dynamic Debugging Tool 161

■

A>
DDT SCAN .HEX

Start Debugger using hex format machine code

16K DDT VER 1.0
NEXT PC
0121 0000
-X ------------------ last load address + 1 next instruction

(to execute at
C0Z0M0E0I0 A=00 B=0000 D=0000 H = 0000 S=0100 P=0000 OUT 7F PC=O
-XP I

Examine registers before debug run
P=0000 100

Change PC to 100
—X
- Look at registers again PC changed

COZOMOEOIO A=00 B=0000 D=0000 H=0000 S=0100 P=0100 MVI B,08^^
— L100 Next instruction

to execute at PC= 100

-L

0100 MVI B,08 \
0102 MVI C,00 \
0104 LXI H.0119 1
0107 MOV A.M / Disassembled Machine
0108 SUB C Code at 100H
0109 JNC 010D > (See Source Listing
010C MOV C,A for comparison)
010D INX H \
010E DCR B)
010F JNZ 0107 /
0112 MOV A.C /

0113 STA 0121
0116 JMP 0000
0119 STAX B
011A NOP
011 B INR B
011C INX B
011D DCR B
011E MVI B,01
0120 DCR B
0121 LXI D,2200
0124 LXI H,0200

A little more
machine code
(note that Program
ends at location 116
with a JMP to 0000)

- A116 enter inline assembly mode to change the JMP to 0000 into a RST 7, which
will cause the program under test to return to DDT if 116H

0116 R ST 7 is ever executed.

0117 (single carriage return stops assembly mode)

— L113 List Code at 113H to check that RST 7 was properly inserted

0113
0116

STA
RST

0121
- ------------- '

— in place of JMP

0117 NOP
0118 NOP
0119 STAX B
011A NOP
011B INR B
011C INX B

162 CP/M Reference Manual

—X Look at registers

COZOMOEOIO A=OO B=OOOO D=OOOO
—I Execute Program for one step.

COZOMOEOIO A=OO B = OOOO D=OOOO
—I Trace one step again (note 08H in B)

COZOMOEOIO A=OO B=OOOO D=OOOO
—I Trace again (Register C is cleared)

is executedinitial CPU state, before

automatic breakpoint

H=OOOO S=O1OO P=O1OO

H=OOOO S=O1OO P=O1OO

H=OOOO S = O1OO P=0102 MVI C,00*0104

MVI B,08*0102

MVI B,08

COZOMOEOIO A=00 B=0800 D=0000 H=0000 S=0100 P=0104 LXIH,0119*0107
—T3 Trace three steps

Automatic breakpoint at 10DH

Current CPU state

010D*0108

— G

CPU state at end of program

Automatic
Breakpoint

*0116
-X

Data is displayed
in ASCII with a “0”
in the position of
non-graphic
characters

H
B
0107
A,M
C*0109

Bun program from current PC until completion (in real-time)
breakpoint at 116H, caused by executing RST 7 in machine code

rLower case x
” i * W

COZOMOEOIO
COZOMOEOIO
C0Z0M0E0I1
— D119 Display memory starting at 119H

__________________ Program data

A=00 B=0800 D=0000 H=0119 S=0100 P=0107 MOV A.M
A=02 B=0800 D=0000 H=0119 S=0100 P=0108 SUB C
A=02 B=0800 D=0000 H=0119 S=0100 P=0109 JNC 010D*010D

-X

0119 4)2 00 04 03 05 06 ZqD...................................... ~
0120 'kQ5y^11 00 22 21 00 02 7E EB 77 13 23 EB OB (78) B1
0130 C2 27 01 C3 03 29 00 00 00 00 00 00 00 00 00 00
0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01 AO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01 BO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01 CO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

HC0Z0M0E0I1 A=02 B=0800 D=0000 H=0119 S=0100 P=010D INX
—T5 Trace 5 steps from current CPU state

C0Z0M0E0I1 A = 02 B=0800 D = 0000 H=0119 S=0100 P=010D INX
C0Z0M0E0I1 A=02 B=0800 D=0000 H=011A S=0100 P=010E DCR
C0Z0M0E0I1 A=02 B=0700 D = 0000 H=011A S = 0100 P=010F JNZ
C0Z0M0E0I1 A=02 B=0700 D=0000 H=011A S=0100 P=0107 MOV
C0Z0M0E0I1 A=00 B=0000 D=0000 H=0119 S=0100 P=0108 SUB
— U5 Trace without listing intermediate states

C0Z0M0E1I1 A=00 B=0700 D=0000 H=011A S=0100 P=0109 JNC
— X CPU State at end of U5

C0Z0M0E1I1 A=04 B=0600 D = 0000 H = 011B S=0100 P=0108 SUB

C0Z1M0E1I1 A=00 B=0000 D=0000 H=0121 S=0100 P=0116 RST 07
—XP examine and change program counter

P=0116 100

-X

C0Z1M0E1I1 A=00 B = 0000 D=0000 H=0121 S = 0100 P=0100 MVI B,08
IIP Trace 10 (hexadecimal) steps subtext for comparison

first data element current largest value A<C
C0Z1M0E1I1 A=00 B=0000 DXfOOO H=0121 <8-0100 P=0100 MVI B,08 /
C0Z1M0E1I1 A=00 B=0800/-6=0000 H=£T2< S=0100 P=0102 MVI C,00 /

C0Z1M0E1I1 A = 00 B=p800 D = OOOC -<1=0121 S = 0100 P=0104 LXI H.0119 /
C0Z1M0E1I1 A=00 ^B^0800 0^0000 H=0119 S=0100 P=0107 MOV A.M
C0Z1M0E1I1 A=@T' B=08@" ' D = 0000 H=0119 S=0100 P=0108 SUB C^^
C0Z0M0E0I1 A=02 B=0800 D=0000 H=0119 S = 0100 P=0109 JNC 010D

CP/M Dynamic Debugging Tool 163

H
n
■
M
II
II
II

n

C0Z0M0E0I1 A=02 B=W800 D=0000
C0Z0M0E0I1 A=02 B = 0800 D=0000
C0Z0M0E0I1 A=02 B=0700 D=0000
C0Z0M0E0I1 A=02 B=0700 D=0000
C0Z0M0E0I1 A=00 B=0700 D=0000
C0Z1M0E1I1 A=00 B=0700 D=0000
C0Z1M0E1I1 A=00 B=0700 D=0000
C0Z1M0E1I1 A=00 B=0700 D=0000
C0Z0M0E1I1 A=00 B=0600 D=0000
C0Z0M0E1I1
-A 109

A=00 B=0600 D = 0000

Insert a “hot patch” into
0109 JC

010C

10D the machine code
to change the
JNC to JC

—GO Stop DDT so that a version of
the patched program can be saved

Program should have moved the
value from A into C since A >C.

H=0119 S = 0100 P=010D INX
H=011A S=0100 P=010E DCR
H=011A S=0100 P=010F JNZ
H=011A S=0100 P=0107 MOV
H=011A S=0100 P=0108 SUB
H=011A S = 0100 P=0109 JNC
H=011A S=0100 P=010D INX
H=011B S=0100 P=010E DCR
H=011B S=0100 P=010F JNZ
H=011B S=0100 P=0107 MOV

Since this code was not executed,
it appears that the JNC should
have been a JC instruction

SAVE 1 SCAN.COM Program resides on first page, so save 1 page.

A DDT SCAN. COM Pestart DDT with the saved memory image to continue testing

16K DDT VER 1.0
NEXT PC
0200 0100
— L100 List some code

0100 MVI
0102 MVI
0104 LXI
0107 MOV
0108 SUB
0109 JC
01OC MOV
010D INX
010E DCR
010F JNZ
0112 MOV
-XP

P=0100

B. 08
C, 00
A IV|1 Previous patch is present in X-COM

C)
010D-7
C.A
H
B
0107
A.C

—T10 Trace to see how patched version operates „ ±Data is moved from A to C

breakpoint after 16 steps

C1Z0M0E1I1 A=FE B = 0602 D=0000 H = 011B S = 0100 P = 0107 MOV A.M
— G.108 Pun from current PC and breakpoint at 108H

COZOMOEOIO A=00 B=0000 D=0000 H=0000 S = 010G- P=0100 MVI B.08
COZOMOEOIO A=00 B=0800 D=0000 H=0000 StWIOO P=0102 MVI C.00
COZOMOEOIO A = 00 B=0800 D = 0000 H = OOOQ/^S=0100 P=0104 LXI H.0119
COZOMOEOIO A = 00 B=0800 D = 0000 H-0419 S=0100 P=0107 MOV A.M
COZOMOEOIO A=@ B=0800 D-0000./K=0119 S = 0100 P=0108 SUB C
C0Z0M0E0I1 A=02 X=0800 D=pQ0O H=0119 S=0100 P = 0109 JC 010D
C0Z0M0E0I1 A=02 B=W§00 /D^OOOO H=0119 S = 0100 P=010C MOV C.A
C0Z0M0E0I1 A = 02 B = 08@T D = 0000 H = 0119 S = 0100 P=010D INX H
C0Z0M0E0I1 A=02 B=0802 D = 0000 H=011A S=0100 P=010E DCR B
C0Z0M0E0I1 A = 02 B=0702 D = 0000 H=011A S = 0100 P=010F JNZ 0107
C0Z0M0E0I1 A=02 B = 0702 D=0000 H=011A S=0100 P=0107 MOV A.M
C0Z0M0E0I1 A=00 B = 0702 D=0000 H=011A S=0100 P=0108 SUB C
C1Z0M1E0I0 A=FE B=0702 D=0000 H = 011A S = 0100 P=0109 JC 01OD
C1Z0M1E0I0 A = FE B=0702 D=0000 H=011A S = 0100 P=010D INX H
C1Z0M1E0I0 A = FE B = 0702 D=0000 H=011B S = 0100 P=010E DCR B
C1Z0M0E1I1 A = FE B=0602 D=0000 H=011B S=0100 P=010F JNZ 0107*0107

SAVE_1_SCAN.COM

164 CP/M Reference Manual

*0108
_ x

x~ next data item

C1Z0M0E1I1
—T

A=04 B = 0602

Single i

D = 0000

step for a ft

H=011B

?w cycles

S=0100 P=0108 SUB C

C1Z0M0E1I1
—T

A=04 B = 0602 D=0000 H=011B S=0100 P=0108 SUB 0*0109

C0Z0M0E0I1
-X

A=02 B=0602 D = 0000 H=011B S=0100 P=0109 JC 010DW10C

C0Z0M0E0I1 A=02 B = 0602 D = 0000 H=011B S=0100 P=010C MOV C.A
— G Run to completion

*0116
-X

C0Z1M0E1I1 A = 03 B = 0003 D=0000 H=0121 S=0100 P = 0116 RST 07
—S121 look at the value of "LARGE"

0121 03 Wrong Value!

0122 00

0123 22

0124 21

0125 00

End of the S command

0127

0100
0102
0104
0107
0108
0109
010C
010D
010E
010F
0112
— L

0113
0116
0117
0118
0119
011A
011B
0110
011D
011E
0120
-XP

7E

Review the code

MVI B,08
MVI 0,00
LXI 1-1,0119
MOV A,M
SUB C
JC 010D
MOV C,A
INX H
DOR B
JNZ 0107
MOV A,C

STA 0121
RST 07
NOP
NOP
STAX B
NOP
INR B
INX B
DOR B
MVI B,01
DOR B

P=0116 100 Reset the PC

CP/M Dynamic Debugging Tool 165

n
■
H
n
Hl

n
M
II
n
n
n
■
n
II
n

■
n
n
■
n

—T Single step, and watch data values

C0Z1M0E1I1
—T

C0Z1M0E1I1

A=03

A=03

B = 0003 D=0000 1-1=0121 S=0100 P=0100 MVI

MVI

B, 08*0102

C, 00*0104B=0803 D = 0000 H=0121 S=0100 P=0102
—T

C0Z1M0E1I1 A=03

'Count set
\ ^'■'‘‘largest" set

B=0800 D--0000 H=0121 S=0100 P = 0104 LXI H,0119*0107
-T

C0Z1M0E1I1 A=03
base address of data set

B=0800 D = 0000 H=0119 S=0100 P=0107 MOV A.MW108
—T

C0Z1M0E1I1
f first data item brought to A

A=02 B=0800 D=0000 H=0119 S=0100 P = 0108 SUB CW109
—T

C0Z0M0E0I1 A=02 B=0800 D=0000 H=0119 S=0100 P=0109 JC 010DW10C
—T

C0Z0M0E0I1 A=02 B=0800 D=0000 1-1=0119 S=0100 P=010C MOV C,A*010D
—T

C0Z0M0E0I1 A=02
first data item moved to C correctly

8=0802 0=0000 1-1=0119 S=0100 P=010D INX H*010E
-T

C0Z0M0E0I1 A=02 B = 0802 D=0000 1-1=011A S=0100 P=010E DCR B*010F
—T

C0Z0M0E0I1 A=02 B = 0702 D=0000 H=011A S = 0100 P = 010F JNZ 0107*0107
-T

C0Z0M0E0I1 A=02 B = 0702 D=0000 H=011A S=0100 P=0107 MOV A.MW108
—T

C0Z0M0E0I1 A=00
second data item brought to A

B=0702 D=0000 1-1=011A S=0100 P=0108 SUB C*0109
—T

C1Z0M1E0I0 A=FE
subtract destroys data value which was loaded!!!

8=0702 D=0000 H=011A S=0100 P=0109 JC 010DW10D
—T

C1Z0M1E0I0 A=FE B = 0702 D=0000 H=011A S=0100 P=010D INX H*010E
-L100

0100 MVI
0102 MVI
0104 LXI
0107 MOV
0108 SUB
0109 JC
01OC MOV
010D INX
010E DCR
010F JNZ
0112 MOV
-A108

B, 08
C, 00
1-1,011
A,M
C —
010D
C,A
H
B
0107
A,C

9

-—— This should have been a CMP so that register A
would not be destroyed

0108 CMP C hot patch at 108H changes SUB to CMP

0109

—GO stop DDT for SAVE

SAVE 1 SCAN.COM

A>DDT SCAN. COM

16K DDT VER 1.0
NEXT PC
0200 0100

Save memory image
Restart DDT

SCAN.COM

166 CP/M Reference Manual

-XP

P=0100

-L116

0116 RST
0117 NOP
0118 NOP
0119 STAX
011A NOP
— (rubout)

Look at code to see if it was properly loaded
(long typeout aborted with rubout)

-G.116 Run from 100H to completion

*0116
—XC Look at Carry (accidental typo)

C1

—X Look at CPU state

C1Z1M0E1I1 A=06 B=0006 D=0000 H=0121 S=0100 P=0116 RST 07
-S121 Look at “Large” - it appears to be correct.

0121 06

0122 00

0123 22

— GO stop DDT

ED SCAN. ASM Re-edit the source program, and make both changes

*NSUB ctl-Z
*OLT C

SUB 1 C
* SSUB@CMP@OLT

CMP C
*

JNC NFOUND
*sncQcQolt

JC NFOUND

; LARGER VALUE IN C?

; LARGER VALUE IN C?

; JUMP IF LARGER VALUE NOT FOUND

; JUMP IF LARGER VALUE NOT FOUND
*E

ASM SCAN.AAZ Re-assemb\e, selecting source from disk A

CP/M ASSEMBLER - VER 1.0
hex to disk A
print to Z(selects no print file)

0122
002H USE FACTOR
END OF ASSEMBLY

DDT SCAN.HEX Rerun debugger to check changes

16K DDT VER 1.0
NEXT PC
0121 0000
-L116

B

0116
0119
011A
011B

0000
B

JMP
STAX
NOP
INR

(rubout)

check to ensure end is still at 116H

CP/M Dynamic Debugging Tool 167

R

—G100.116 Go from beginning with breakpoint at end

*0116 breakpoint reached
-D121 Look at “LARGE”

- correct value computed
0121 (06) 00 22 21 00 02 7E EB 77 13 23 EB OB 78 B1 . . - . w. # . . X
0130 C2 27 01 C3 03 29 00 00 00 00 00 00 00 00 00 00 ’ I
0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 . .

— (ruboutl aborts long typeout

—GO stop DDT, debug session complete

168 CP/M Reference Manual

Index 169

■
n
■
n
H
■
n
H
II
n
ii
■
H
■
II
N
n

A
A (append) 98
A (Assemble) 150
ASM

arithmetic operators 123
assembler directives 126
command 23
DB 131
DS 132
DW 131
END 127
ENDIF 129
EQU 127
error messages 139
file type 52
IF 129
labels 120
logical operators 123
numeric constants 121
operation codes 132
ORG 126
overview 116
program format 118
reserved words 122
sample session 140
SET 128
string constants 123

B
B (block mode transfer) 33
BAK file type 52

BAS file type 52
BAT: 23
BDOS 3
BDOS error messages 43
BIOS 3,46
BIOS call conventions 50
BOOT 49
Built-in commands

DIR 12
ERA 11
overview 10
REN 13
SAVE 14
TYPE 14
USER 15

c
Call conventions (BIOS) 46
CCP (Console Command

Processor) 4, 46
Close file 64
COM file 52
Compute file size 76
CON: 22
Console input 57
Console output 57
Context editor 94
Control characters 16
CP/M

built-in commands 10
disk parameter block 5

170 CP/M Reference Manual

CP/M (continued)
file references 7
file types 52
general command structure 7
line editing 15
logical divisions 3
transient commands 17

Currently logged drive 10

D
D (delete) 33
DB 131
DDT (Dynamic Debugging Tool)

A (Assemble) 150
command list 149
D (Display) 150
F(Fill) 151
G (Go) 152
I (Input) 153
implementation 158
L(List) 153
M (Move) 154
overview 149
R(Read) 154
S(Set) 155
T (Trace) 156
U (Untrace) 157
X (Examine) 157

Delete file 65
DIR (directory) 12
direct console I/O 58
DS 132
DUMP 43
DW 131

E
E (echo) 33
ED

command strings 102
command summary 110
control characters 109
errors 108
memory buffer 99
operation 95

ED (continued)
overview 95
repetitive commands 107
source libraries 107
text alteration 103
text editing 111
text search 103
text transfer 95

END 127
ENDIF 129
EOF: 31
EQU 127
Error messages

ASM 139
BDOS 43
ED 108

F (filter) 33
FDOS 46, 50
file control block 53
file reference 7
file types 52

G
G (get file) 34
Get address (allocation) 70
Get address (disk parameters) 72
Get console status 61
Get I/O Byte 59
Get Read/Only vector 71
Get user code 72
General command structure 7

H
H (hex data transfer) 34
Hex files 52

/
I (ignore) 34
IF 129
INP: 31
INT file type 52
Intel 8080 2

Index 171

R
■

■
■
n
■
■

R
■
■
■
R'

n
■

-

R

Jump codes 133

L (translate) 34
Line editing commands 15
List devices 23
List output 58
LOAD 26
Logical devices 22
LPT: 23
LST: 23

M
Make file 67
Memory buffer organization 97
Memory organization (CP/M) 47

N
N (add line numbers) 34
NUL: 31

o
O (object file transfer) 34
Open file 63
Operand 120
Operation codes 132
ORG 126
OUT: 31
Output Control 15

P
P (include page ejects) 34
PIP 27
Physical devices 23
Print string 59
PRN: 31
PTP: 23
PTR: 23
PUN: 23
Punch output 58

Q
Q (quit copying) 34

R
R (read system files) 35
RDR: 23
Read console buffer 60
Read random 73
Read sequential 66
Reader input 57
RELfile 52
REN (REName) 13
Reset disk system 62
Return current disk 69
Return login vector 68
Return version number 61

s
S (start copying) 35
Sample programs

file dump utility 81
file-to-file copy program 78
random access program 84

SAVE 14
Search for First 64
Search for Next 65
Select disk 62
SET 128
Set DMA address 69
Set file attributes 71
Set I/O Byte 59
Set random record 77
Set user code 72
Special characters 8
STAT 18
SUBMIT 40
SYM file 52
System function summary 92

T(expand tabs) 35
Text transfer operations 95
Transient commands 17
TTY: 23
TYPE 14

172 CP/M Reference Manila

u
U (all upper case) 35
UC1: 23
UL1: 23
UP1: 23
UP2: 23
UR1: 23
UR2: 23
USER 15

V
V (verify) 35
VAL 24

w
\N (write over R/O) 35
Write protect disk 70
Write random 75
Write sequential 66

X
XSUB 42

Z
Z (zero parity bit on input) 35
Zilog Z-80 2

Tuck end flap
inside back cover
when using manual.

jcippkz computer
20525 Mariani Avenue

Cupertino, California 95014
(408) 996-1010
TLX171-576

076-0004

